Bounds for the chaotic region in the Lorenz model

被引:39
作者
Barrio, Roberto [1 ,2 ]
Serrano, Sergio [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, GME, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
关键词
Lorenz model; Chaos; Sensitivity analysis; Chaos indicators; Fenichel theory; ORDINARY DIFFERENTIAL-EQUATIONS; SINGULAR PERTURBATION-THEORY; TAYLOR-SERIES METHOD; INVARIANT-MANIFOLDS; DYNAMICAL-SYSTEMS; BIFURCATIONS; FLOW; ODES/DAES; SLOW;
D O I
10.1016/j.physd.2009.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper, the authors made an extensive numerical study of the Lorenz model, changing all three parameters of the system. We conjectured that the region of parameters where the Lorenz model is chaotic is bounded for fixed r. In this paper, we give a theoretical proof of the conjecture by obtaining theoretical bounds for the chaotic region and by using Fenichel theory. The theoretical bounds are complemented with numerical studies performed using the Maximum Lyapunov Exponent and OFLI2 techniques, and a comparison of both sets of results is shown. Finally, we provide a complete three-dimensional model of the chaotic regime depending oil the three parameters. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1615 / 1624
页数:10
相关论文
共 48 条
  • [31] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [32] 2
  • [33] Crocheting the Lorenz manifold
    Osinga, HM
    Krauskopf, B
    [J]. MATHEMATICAL INTELLIGENCER, 2004, 26 (04) : 25 - 37
  • [34] ANALYTICAL INVESTIGATION OF THE HOPF-BIFURCATION IN THE LORENZ MODEL
    PADE, J
    RAUH, A
    TSAROUHAS, G
    [J]. PHYSICS LETTERS A, 1986, 115 (03) : 93 - 96
  • [36] Roschin M., 1978, PRIKL MAT MEKH, V42, P950
  • [37] SALTZMAN B, 1962, J ATMOS SCI, V19, P329, DOI 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO
  • [38] 2
  • [39] Convergence to equilibria in the Lorenz system via monotone methods
    Sanchez, LA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (02) : 341 - 362
  • [40] NORMAL FORMS AND LORENZ ATTRACTORS
    Shil'nikov, A. L.
    Shil'nikov, L. P.
    Turaev, D. V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1123 - 1139