Bounds for the chaotic region in the Lorenz model

被引:39
作者
Barrio, Roberto [1 ,2 ]
Serrano, Sergio [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, GME, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
关键词
Lorenz model; Chaos; Sensitivity analysis; Chaos indicators; Fenichel theory; ORDINARY DIFFERENTIAL-EQUATIONS; SINGULAR PERTURBATION-THEORY; TAYLOR-SERIES METHOD; INVARIANT-MANIFOLDS; DYNAMICAL-SYSTEMS; BIFURCATIONS; FLOW; ODES/DAES; SLOW;
D O I
10.1016/j.physd.2009.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper, the authors made an extensive numerical study of the Lorenz model, changing all three parameters of the system. We conjectured that the region of parameters where the Lorenz model is chaotic is bounded for fixed r. In this paper, we give a theoretical proof of the conjecture by obtaining theoretical bounds for the chaotic region and by using Fenichel theory. The theoretical bounds are complemented with numerical studies performed using the Maximum Lyapunov Exponent and OFLI2 techniques, and a comparison of both sets of results is shown. Finally, we provide a complete three-dimensional model of the chaotic regime depending oil the three parameters. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1615 / 1624
页数:10
相关论文
共 48 条
  • [1] Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
  • [2] Afraimovich V.S., 1983, T MOSCOW MATH SOC, V2, P153
  • [3] SYSTEMATICS OF THE LORENZ MODEL AT SIGMA=10
    ALFSEN, KH
    FROYLAND, J
    [J]. PHYSICA SCRIPTA, 1985, 31 (01): : 15 - 20
  • [4] Alligood K.T, 1997, Textbooks in Mathematical Sciences
  • [5] [Anonymous], 2005, Texts in Applied Mathematics
  • [6] [Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
  • [7] Argyris J., 1994, TEXTS COMPUTATIONAL, V7
  • [8] Writing the history of dynamical systems and chaos:: Longue duree and revolution, disciplines and cultures
    Aubin, D
    Dalmedico, AD
    [J]. HISTORIA MATHEMATICA, 2002, 29 (03) : 273 - 339
  • [9] Spurious structures in chaos indicators maps
    Barrio, R.
    Borczyk, W.
    Breiter, S.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1697 - 1714
  • [10] A three-parametric study of the Lorenz model
    Barrio, R.
    Serrano, S.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) : 43 - 51