Stability analysis of fractional differential time-delay equations

被引:22
作者
Thanh, Nguyen T. [1 ]
Hieu Trinh [2 ]
Phat, Vu N. [3 ]
机构
[1] Univ Min & Geol, Dept Math, Hanoi, Vietnam
[2] Deakin Univ, Sch Engn, Geelong, Vic 3217, Australia
[3] VAST, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
关键词
Lyapunov methods; delays; Laplace transforms; asymptotic stability; stability analysis; fractional differential time-delay equations; Lyapunov function method; Caputo fractional derivatives; Laplace transform; Mittag-Leffler function; exponential boundedness; finite-time stability; ORDER SYSTEMS;
D O I
10.1049/iet-cta.2016.1107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study provides a novel analytical approach to studying the solutions and stability of fractional differential delay equations without using Lyapunov function method. By applying the properties of Caputo fractional derivatives, the Laplace transform and the Mittag-Leffler function, the authors first provide an explicit formula and solution bounds for the solutions of linear fractional differential delay equations. Then, they prove new sufficient conditions for exponential boundedness, asymptotic stability and finite-time stability of such equations. The results are illustrated by numerical examples.
引用
收藏
页码:1006 / 1015
页数:10
相关论文
共 34 条
[1]   Practical stability with respect to initial time difference for Caputo fractional differential equations [J].
Agarwal, Ravi ;
O'Regan, D. ;
Hristova, S. ;
Cicek, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :106-120
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Razumikhin Stability Theorem for Fractional Systems with Delay [J].
Baleanu, D. ;
Sadati, S. J. ;
Ghaderi, R. ;
Ranjbar, A. ;
Abdeljawad , T. ;
Jarad, Fahd .
ABSTRACT AND APPLIED ANALYSIS, 2010, :1-9
[5]   Stability regions for fractional differential systems with a time delay [J].
Cermak, Jan ;
Hornicek, Jan ;
Kisela, Tamas .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 31 (1-3) :108-123
[6]   Analytical stability bound for a class of delayed fractional-order dynamic systems [J].
Chen, YQ ;
Moore, KL .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :191-200
[7]   About Robust Stability of Caputo Linear Fractional Dynamic Systems with Time Delays through Fixed Point Theory [J].
De la Sen, M. .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[8]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[9]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[10]  
Erdelyi A., 1953, Higher Transcendental Functions