TRACE OPTIMIZATION USING SEMIDEFINITE PROGRAMMING

被引:0
作者
Cafuta, Kristijan [1 ]
Klep, Igor [2 ,3 ]
Povh, Janez [4 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Trzaska 25, Ljubljana 1000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1111, Slovenia
[4] Fac Informat Studies Novo Mesto, Novo Mesto 8000, Slovenia
来源
SOR'11 PROCEEDINGS: THE 11TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA | 2011年
关键词
noncommutative polynomial; sum of squares; semidefinite programming; Matlab toolbox; free positivity; NONCOMMUTATIVE POLYNOMIALS; HERMITIAN SQUARES; SUMS; RELAXATIONS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present the algorithm and its implementation in the software package NCSOStools for finding sums of Hermitian squares and commutators decompositions for polynomials in noncommuting variables. It is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allow us to use semidefinite programming.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [31] Semidefinite programming for min-max problems and games
    Laraki, R.
    Lasserre, J. B.
    [J]. MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) : 305 - 332
  • [32] Relaxations of the Satisfiability Problem Using Semidefinite Programming
    Etienne de Klerk
    Hans van Maaren
    Joost P. Warners
    [J]. Journal of Automated Reasoning, 2000, 24 : 37 - 65
  • [33] Graph partitioning using linear and semidefinite programming
    Lisser, A
    Rendl, E
    [J]. MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 91 - 101
  • [34] Testing the nullspace property using semidefinite programming
    Alexandre d’Aspremont
    Laurent El Ghaoui
    [J]. Mathematical Programming, 2011, 127 : 123 - 144
  • [35] Ensemble clustering using semidefinite programming with applications
    Singh, Vikas
    Mukherjee, Lopamudra
    Peng, Jiming
    Xu, Jinhui
    [J]. MACHINE LEARNING, 2010, 79 (1-2) : 177 - 200
  • [36] Ensemble clustering using semidefinite programming with applications
    Vikas Singh
    Lopamudra Mukherjee
    Jiming Peng
    Jinhui Xu
    [J]. Machine Learning, 2010, 79 : 177 - 200
  • [37] Relaxations of the satisfiability problem using semidefinite programming
    De Klerk, E
    Van Maaren, H
    Warners, JP
    [J]. JOURNAL OF AUTOMATED REASONING, 2000, 24 (1-2) : 37 - 65
  • [38] Graph partitioning using linear and semidefinite programming
    A. Lisser
    F. Rendl
    [J]. Mathematical Programming, 2003, 95 : 91 - 101
  • [39] Equality based contraction of semidefinite programming relaxations in polynomial optimization
    Vo, Cong
    Muramatsu, Masakazu
    Kojima, Masakazu
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2008, 51 (01) : 111 - 125
  • [40] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Madani, Ramtin
    Kheirandishfard, Mohsen
    Lavaei, Javad
    Atamturk, Alper
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (03) : 423 - 451