TRACE OPTIMIZATION USING SEMIDEFINITE PROGRAMMING

被引:0
|
作者
Cafuta, Kristijan [1 ]
Klep, Igor [2 ,3 ]
Povh, Janez [4 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Trzaska 25, Ljubljana 1000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1111, Slovenia
[4] Fac Informat Studies Novo Mesto, Novo Mesto 8000, Slovenia
来源
SOR'11 PROCEEDINGS: THE 11TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA | 2011年
关键词
noncommutative polynomial; sum of squares; semidefinite programming; Matlab toolbox; free positivity; NONCOMMUTATIVE POLYNOMIALS; HERMITIAN SQUARES; SUMS; RELAXATIONS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present the algorithm and its implementation in the software package NCSOStools for finding sums of Hermitian squares and commutators decompositions for polynomials in noncommuting variables. It is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allow us to use semidefinite programming.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [1] The tracial moment problem and trace-optimization of polynomials
    Burgdorf, Sabine
    Cafuta, Kristijan
    Klep, Igor
    Povh, Janez
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 557 - 578
  • [2] CERTIFYING OPTIMALITY OF BELL INEQUALITY VIOLATIONS: NONCOMMUTATIVE POLYNOMIAL OPTIMIZATION THROUGH SEMIDEFINITE PROGRAMMING AND LOCAL OPTIMIZATION\ast
    Hrga, Timotej
    Klep, Igor
    Povh, Janez
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1341 - 1373
  • [3] State estimation of DC microgrids using manifold optimization and semidefinite programming
    Montoya, Oscar Danilo
    Garces-Ruiz, Alejandro
    Gil-Gonzalez, Walter
    RESULTS IN ENGINEERING, 2024, 24
  • [4] Variational density matrix optimization using semidefinite programming
    Verstichel, Brecht
    van Aggelen, Helen
    Van Neck, Dimitri
    Ayers, Paul W.
    Bultinck, Patrick
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) : 2025 - 2028
  • [5] Semidefinite programming relaxations and algebraic optimization in control
    Parrilo, PA
    Lall, S
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (2-3) : 307 - 321
  • [6] Semidefinite programming in combinatorial optimization
    Goemans, MX
    MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) : 143 - 161
  • [7] Semidefinite programming in combinatorial optimization
    Michel X. Goemans
    Mathematical Programming, 1997, 79 : 143 - 161
  • [8] GloptiPoly 3: moments, optimization and semidefinite programming
    Henrion, Didier
    Lasserre, Jean-Bernard
    Lofberg, Johan
    OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) : 761 - 779
  • [9] Semidefinite programming and combinatorial optimization
    Rendl, F
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 255 - 281
  • [10] ON INTEGRALITY IN SEMIDEFINITE PROGRAMMING FOR DISCRETE OPTIMIZATION
    De Meijer, Frank
    Sotirov, Renata
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 1071 - 1096