First Integral Technique for Finding Exact Solutions of Higher Dimensional Mathematical Physics Models

被引:18
作者
Javeed, Shumaila [1 ]
Riaz, Sidra [2 ]
Alimgeer, Khurram Saleem [3 ]
Atif, M. [4 ]
Hanif, Atif [5 ]
Baleanu, Dumitru [6 ,7 ]
机构
[1] COMSATS Univ Islambad, Dept Math, Islamabad Campus,Pk Rd, Chak Shahzad Islamabad 45550, Pakistan
[2] Riphah Int Univ, Dept Math, Sect 1-14, Islamabad 45240, Pakistan
[3] COMSATS Univ Islambad, Dept Elect & Comp Engn, Islamabad Campus,Pk Rd, Chak Shahzad Islamabad 45550, Pakistan
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[5] King Saud Univ, Coll Sci, Bot & Microbiol Dept, Riyadh 11451, Saudi Arabia
[6] Cankaya Univ, Dept Math, Ankara, Turkey
[7] Inst Space Sci, Magurele 06530, Romania
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 06期
关键词
first integral method; conformable derivative; modified regularized long wave; potential Kadomtsev Petviashvili equation; coupled dispersive long wave (DLW) system; PARTIAL-DIFFERENTIAL-EQUATIONS; FRACTIONAL BOUSSINESQ;
D O I
10.3390/sym11060783
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we establish the exact solutions of some mathematical physics models. The first integral method (FIM) is extended to find the explicit exact solutions of high-dimensional nonlinear partial differential equations (PDEs). The considered models are: the space-time modified regularized long wave (mRLW) equation, the (1+2) dimensional space-time potential Kadomtsev Petviashvili (pKP) equation and the (1+2) dimensional space-time coupled dispersive long wave (DLW) system. FIM is a powerful mathematical tool that can be used to obtain the exact solutions of many non-linear PDEs.
引用
收藏
页数:14
相关论文
共 28 条
[1]   Analytical solution of nonlinear space-time fractional differential equations using the improved fractional Riccati expansion method [J].
Abdel-Salam, Emad A-B. ;
Gumma, Elzain A. E. .
AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) :613-620
[2]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[3]  
Abu Hammad M., 2014, International Journal of Pure and Applied Mathematics, V94, P215
[4]   Nonclassic solitonic structures in DNA's vibrational dynamics [J].
Aguero, Maximo A. ;
De Lourdes Najera, M. A. ;
Carrillo, Mauricio .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (16) :2571-2582
[5]   Exponential rational function method for space-time fractional differential equations [J].
Aksoy, Esin ;
Kaplan, Melike ;
Bekir, Ahmet .
WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (02) :142-151
[6]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[7]   A conformable fractional calculus on arbitrary time scales [J].
Benkhettou, Nadia ;
Hassani, Salima ;
Torres, Delfim F. M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :93-98
[8]   The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas [J].
Dehghan, Mehdi ;
Salehi, Rezvan .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (12) :2540-2549
[9]   Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method [J].
Dehghan, Mehdi ;
Manafian, Jalil ;
Saadatmandi, Abbas .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) :448-479
[10]   New exact travelling wave solutions using modified extended tanh-function method [J].
El-Wakil, S. A. ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :840-852