Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain

被引:57
作者
Zhang Ming-ming [1 ,2 ]
Dong Bao-di [1 ]
Qiao Yun-zhou [1 ]
Shi Chang-hai [3 ]
Yang Hong [1 ,2 ]
Wang Ya-kai [1 ,2 ]
Liu Meng-yu [1 ]
机构
[1] Chinese Acad Sci, Key Lab Agr Water Resources, Hebei Lab Agr Water Saving, Ctr Agr Resources Res,Inst Genet & Dev Biol, Shijiazhuang 050021, Hebei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Qingdao Agr Univ, Qingdao 266109, Peoples R China
基金
中国国家自然科学基金;
关键词
winter wheat; irrigation regime; nitrogen application; grain yield; water use efficiency; USE EFFICIENCY; GRAIN-YIELD; CROPPING SYSTEM; HARVEST INDEX; MANAGEMENT; GROUNDWATER; PROGRESS; FERTILIZATION; TEMPERATURE; CULTIVARS;
D O I
10.1016/S2095-3119(17)61883-5
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat (Triticum aestivum L.) in the North China Plain (NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels (W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates (N0, 0; N1, 100 kg N ha(-1); N2, 200 kg N ha(-1); N3, 300 kg N ha(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice (W3N3), the net income and output-input ratio of W2N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha(-1) is sufficient to provide a high wheat yield during drought growing seasons in the NCR.
引用
收藏
页码:1194 / 1206
页数:13
相关论文
共 50 条
  • [11] Water-Use Characteristics of Wheat-Maize Rotation System as Affected by Nitrogen Application Rate in North China Plain
    Qin, Jingtao
    Fan, Xichao
    Wang, Xiaosen
    Jiang, Mingliang
    Lv, Mouchao
    AGRONOMY-BASEL, 2024, 14 (05):
  • [12] Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain
    Kan, Zheng-Rong
    Liu, Qiu-Yue
    He, Cong
    Jing, Zhen-Huan
    Virk, Ahmad Latif
    Qi, Jian-Ying
    Zhao, Xin
    Zhang, Hai-Lin
    FIELD CROPS RESEARCH, 2020, 249
  • [13] Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain
    Sun, Hong-Yong
    Liu, Chang-Ming
    Zhang, Xi-Ying
    Shen, Yan-Jun
    Zhang, Yong-Qiang
    AGRICULTURAL WATER MANAGEMENT, 2006, 85 (1-2) : 211 - 218
  • [14] Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain?
    Bai, Huiqing
    Wang, Jing
    Fang, Quanxiao
    Huang, Binxiang
    AGRICULTURAL WATER MANAGEMENT, 2020, 233
  • [15] Optimizing nitrogen fertilizer application under reduced irrigation strategies for winter wheat of the north China plain
    Liu, Ying
    Han, Meikun
    Zhou, Xiaonan
    Li, Wei
    Du, Chenghang
    Zhang, Yitao
    Zhang, Yinghua
    Sun, Zhencai
    Wang, Zhimin
    IRRIGATION SCIENCE, 2022, 40 (02) : 255 - 265
  • [16] Water use efficiency and associated traits in winter wheat cultivars in the North China Plain
    Zhang, Xiying
    Chen, Suying
    Sun, Hongyong
    Wang, Yanmei
    Shao, Liwei
    AGRICULTURAL WATER MANAGEMENT, 2010, 97 (08) : 1117 - 1125
  • [17] Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application
    Wang, Ying
    Shi, Wenjuan
    Wen, Tianyang
    AGRICULTURAL WATER MANAGEMENT, 2023, 277
  • [18] Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain
    XIE Ying-xin
    ZHANG Hui
    ZHU Yun-ji
    ZHAO Li
    YANG Jia-heng
    CHA Fei-na
    LIU Cao
    WANG Chen-yang
    GUO Tian-cai
    JournalofIntegrativeAgriculture, 2017, 16 (03) : 614 - 625
  • [19] Effects of pre-Sowing Irrigation on Crop Water Consumption, Grain Yield and Water Productivity of Winter Wheat in the North China Plain
    Gao, Yang
    Shen, Xiaojun
    Li, Xinqiang
    Meng, Zhaojiang
    Sun, Jingsheng
    Duan, Aiwang
    IRRIGATION AND DRAINAGE, 2015, 64 (04) : 566 - 574
  • [20] Winter wheat grain yield, water use, biomass accumulation and remobilisation under tillage in the North China Plain
    Chu, Pengfei
    Zhang, Yongli
    Yu, Zhenwen
    Guo, Zengjiang
    Shi, Yu
    FIELD CROPS RESEARCH, 2016, 193 : 43 - 53