Artificial SA-I, RA-I and RA-II/vibrotactile afferents for tactile sensing of texture

被引:22
作者
Pestell, Nicholas
Lepora, Nathan F. [1 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1QU, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
touch; robotics; neurophysiology; psychophysics; biomimetics; texture; GLABROUS SKIN; HUMAN HAND; RESPONSES; ROUGHNESS; DISCRIMINATION; PERCEPTION; SURFACES; CODES; TOUCH; UNITS;
D O I
10.1098/rsif.2021.0603
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Robot touch can benefit from how humans perceive tactile textural information, from the stimulation mode to which tactile channels respond, then the tactile cues and encoding. Using a soft biomimetic tactile sensor (the TacTip) based on the physiology of the dermal-epidermal boundary, we construct two biomimetic tactile channels based on slowly adapting SA-I and rapidly adapting RA-I afferents, and introduce an additional sub-modality for vibrotactile information with an embedded microphone interpreted as an artificial RA-II channel. These artificial tactile channels are stimulated dynamically with a set of 13 artificial rigid textures comprising raised-bump patterns on a rotating drum that vary systematically in roughness. Methods employing spatial, spatio-temporal and temporal codes are assessed for texture classification insensitive to stimulation speed. We find: (i) spatially encoded frictional cues provide a salient representation of texture; (ii) a simple transformation of spatial tactile features to model natural afferent responses improves the temporal coding; and (iii) the harmonic structure of induced vibrations provides a pertinent code for speed-invariant texture classification. Just as human touch relies on an interplay between slowly adapting (SA-I), rapidly adapting (RA-I) and vibrotactile (RA-II) channels, this tripartite structure may be needed for future robot applications with human-like dexterity, from prosthetics to materials testing, handling and manipulation.
引用
收藏
页数:15
相关论文
共 44 条
[21]   Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks [J].
Lee, Wang Wei ;
Kukreja, Sunil L. ;
Thakor, Nitish V. .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[22]   Soft Biomimetic Optical Tactile Sensing With the TacTip: A Review [J].
Lepora, Nathan F. .
IEEE SENSORS JOURNAL, 2021, 21 (19) :21131-21143
[23]   Sensing and Recognizing Surface Textures Using a GelSight Sensor [J].
Li, Rui ;
Adelson, Edward H. .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1241-1247
[24]  
Luo S, 2018, IEEE INT CONF ROBOT, P2722, DOI 10.1109/ICRA.2018.8460494
[25]   Natural scenes in tactile texture [J].
Manfredi, Louise R. ;
Saal, Hannes P. ;
Brown, Kyler J. ;
Zielinski, Mark C. ;
Dammann, John F., III ;
Polashock, Vicky S. ;
Bensmaia, Sliman J. .
JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (09) :1792-1802
[26]  
Mukaibo Y, 2005, IEEE INT CONF ROBOT, P2565
[27]   The neural coding of stimulus intensity: Linking the population response of mechanoreceptive Afferents with psychophysical Behavior [J].
Muniak, Michael A. ;
Ray, Supratim ;
Hsiao, Steven S. ;
Dammann, J. Frank ;
Bensmaia, Sliman J. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (43) :11687-11699
[28]   Roughness Encoding for Discrimination of Surfaces in Artificial Active-Touch [J].
Oddo, Calogero M. ;
Controzzi, Marco ;
Beccai, Lucia ;
Cipriani, Christian ;
Carrozza, Maria Chiara .
IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (03) :522-533
[29]   Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J].
Ojala, T ;
Pietikäinen, M ;
Mäenpää, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) :971-987
[30]   Artificial SA-I and RA-I afferents for tactile sensing of ridges and gratings [J].
Pestell, Nicholas ;
Griffith, Thom ;
Lepora, Nathan F. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)