共 51 条
CoS2 nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage
被引:92
作者:
Xia, Huicong
[1
]
Li, Kexie
[1
]
Guo, Yingying
[1
]
Guo, Junhui
[3
]
Xu, Qun
[1
]
Zhang, Jianan
[1
,2
]
机构:
[1] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 30071, Peoples R China
[3] Jilin Univ, State Key Lab Inorgan Synth & Preparat, Changchun 130012, Jilin, Peoples R China
基金:
中国国家自然科学基金;
关键词:
ORDERED MESOPOROUS CARBON;
OXYGEN-REDUCTION REACTION;
SODIUM-ION BATTERIES;
SHELL NANOPARTICLES;
COBALT SULFIDES;
ANODE MATERIALS;
NANOSHEETS;
NANOTUBES;
GRAPHENE;
SUPERCAPACITORS;
D O I:
10.1039/c8ta00689j
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Cobalt sulfide (CoS2)-based nanomaterials are promising electrode materials for various energy storage and conversion applications due to their large specific capacities and catalytic activities. However, CoS2-based nanomaterials are still suffering from their volume expansion, agglomeration and poor cycling stability. Here, we demonstrated an intriguing and effective strategy to confine CoS2 nanodots (<10 nm) within the graphitic carbon walls of porous N-doped carbon spheres (CoS2-in-wall-NCSs), which both avoids the volume change and facilitates the promotion of reaction kinetics in lithium ion batteries (LIBs). Moreover, N-doped carbon spheres (NCSs) with nest-like architectures and graphitic carbon nanoribbons offer an ideal diffusion pathway for electrolyte ions and a highly rapid electron transfer pathway. As a result, the CoS2-in-wall-NCSs still exhibit an excellent performance in LIBs with a high specific capacity of 1080.6 mA h g(-1) at a current density of 200 mA g(-1) even after 500 cycles, which is much better than those of CoS2 nanoparticles (NPs) in the pores of N-doped carbon spheres (CoS2-in-pore-NCSs), metallic Co NPs embedded in N-doped carbon spheres (Co/NCSs), and NCSs. Even at a current density as high as 1000 mA g(-1), a reversible capacity of 735.5 mA h g(-1) is obtained for CoS2-in-wall-NCSs.
引用
收藏
页码:7148 / 7154
页数:7
相关论文