NUMERICAL STUDY OF BLOW-UP IN SOLUTIONS TO GENERALIZED KADOMTSEV-PETVIASHVILI EQUATIONS

被引:11
作者
Klein, Christian [1 ]
Peter, Ralf [1 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2014年 / 19卷 / 06期
基金
欧洲研究理事会;
关键词
Generalized Kadomtsev-Petviasvili equations; blow-up; numerical approaches; dynamic rescaling; KORTEWEG-DE-VRIES; SOLITARY WAVES; CAUCHY-PROBLEM; DECAY;
D O I
10.3934/dcdsb.2014.19.1689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical study of solutions to the generalized Kadomtsev-Petviashvili equations with critical and supercritical nonlinearity for localized initial data with a single minimum and single maximum. In the cases with blow-up, we use a dynamic rescaling to identify the type of the singularity. We present the first discussion of the observed blow-up scenarios. We show that the blow-up in solutions to the L-2 critical generalized Kadomtsev-Petviashvili I case is similar to what is known for the L-2 critical generalized Korteweg-de Vries equation. No blow-up is observed for solutions to the generalized Kadomtsev-Petviashvili II equations for n <= 2.
引用
收藏
页码:1689 / 1717
页数:29
相关论文
共 26 条
[1]   SOLUTIONS OF THE KPI EQUATION WITH SMOOTH INITIAL DATA [J].
BOITI, M ;
PEMPINELLI, F ;
POGREBKOV, A .
INVERSE PROBLEMS, 1994, 10 (03) :505-519
[2]   CONSERVATIVE, HIGH-ORDER NUMERICAL SCHEMES FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION [J].
BONA, JL ;
DOUGALIS, VA ;
KARAKASHIAN, OA ;
MCKINNEY, WR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1695) :107-164
[3]   COMPUTATIONS OF BLOW-UP AND DECAY FOR PERIODIC-SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
DOUGALIS, VA ;
KARAKASHIAN, OA ;
MCKINNEY, WR .
APPLIED NUMERICAL MATHEMATICS, 1992, 10 (3-4) :335-355
[4]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[5]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[6]   Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves [J].
DeBouard, A ;
Saut, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (05) :1064-1085
[7]  
Dix D.B., 1998, Differ. Integral Equ., V11, P679
[8]  
Falkovitch G., 1985, SOV PHYS JETP, V62, P146
[9]   ON THE INVERSE SCATTERING AND DIRECT LINEARIZING TRANSFORMS FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
FOKAS, AS ;
ABLOWITZ, MJ .
PHYSICS LETTERS A, 1983, 94 (02) :67-70
[10]   The Cauchy problem for the Kadomtsev-Petviashvili-I equation without the zero mass constraint [J].
Fokas, AS ;
Sung, LY .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 :113-138