Spatio-temporal deep learning models of 3D turbulence with physics informed diagnostics

被引:36
|
作者
Mohan, Arvind T. [1 ,4 ]
Tretiak, Dima [2 ,4 ]
Chertkov, Misha [3 ]
Livescu, Daniel [4 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA
[3] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[4] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA
来源
JOURNAL OF TURBULENCE | 2020年 / 21卷 / 9-10期
关键词
3D turbulence; deep learning; neural networks; convolutional LSTM; autoencoders; generative adversarial networks; GALERKIN MODELS; REDUCTION; DYNAMICS; FLOWS;
D O I
10.1080/14685248.2020.1832230
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Direct Numerical Simulations (DNSs) of high Reynolds number turbulent flows, encountered in engineering, earth sciences, and astrophysics, are not tractable because of the curse of dimensionality associated with the number of degrees of freedom required to resolve all the dynamically significant spatio-temporal scales. Designing efficient and accurate Machine Learning (ML)-based reduced models of fluid turbulence has emerged recently as a promising approach to overcoming the curse of dimensionality challenge. However, to make the ML approaches reliable one needs to test their efficiency and accuracy, which is recognised as important but so far incomplete task. Aiming to improve this missing component of the promising approach, we design and evaluate two reduced models of 3D homogeneous isotropic turbulence and scalar turbulence based on state-of-the-art ML algorithms of the Deep Learning (DL) type: Convolutional Generative Adversarial Network (C-GAN) and Compressed Convolutional Long-Short-Term-Memory (CC-LSTM) Network. Quality and computational efficiency of the emulated velocity and scalar distributions is juxtaposed to the ground-truth DNS via physics-rich statistical tests. The reported results allow to uncover and classify weak and strong aspects of C-GAN and CC-LSTM. The reported results, as well as the physics-informed methodology developed to test the ML-based solutions, are expected to play a significant role in the future for making the DL schemes trustworthy through injecting and controlling missing physical information in computationally tractable ways.
引用
收藏
页码:484 / 524
页数:41
相关论文
共 50 条
  • [21] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [22] Deep Learning Aided Interpolation of Spatio-Temporal Nonstationary Data
    Kodera, Sayako
    Romer, Florian
    Perez, Eduardo
    Kirchhof, Jan
    Krieg, Fabian
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2221 - 2225
  • [23] Spatio-Temporal 3D Reconstruction from Frame Sequences and Feature Points
    Federico, Giulio
    Carrara, Fabio
    Amato, Giuseppe
    Di Benedetto, Marco
    PROCEEDINGS OF THE 2024 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE MEDIA EXPERIENCES WORKSHOPS, IMXW 2024, 2024, : 52 - 64
  • [24] Enhancing Wildfire Forecasting Through Multisource Spatio-Temporal Data, Deep Learning, Ensemble Models and Transfer Learning
    Jadouli, Ayoub
    El Amrani, Chaker
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (03): : 2614 - 2628
  • [25] MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION
    Tan, Tian
    Venugopal, Vengatesan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [26] Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
    Hu, R.
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    JOURNAL OF HYDROLOGY, 2019, 575 : 911 - 920
  • [27] Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks
    Petkovic, Milena
    Koch, Thorsten
    Zittel, Janina
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (06) : 1812 - 1825
  • [28] A survey on deep learning-based spatio-temporal action detection
    Wang, Peng
    Zeng, Fanwei
    Qian, Yuntao
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (04)
  • [29] Spatio-temporal deep learning for improved face presentation attack detection
    Khan, Shujaat
    Siddique, Taha Hasan Masood
    Ibrahim, Muhammad Sohail
    Siddiqui, Abdul Jabbar
    Huang, Kejie
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [30] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478