Quantum complexity and negative curvature

被引:115
作者
Brown, Adam R. [1 ]
Susskind, Leonard [1 ]
Zhao, Ying [1 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
STATE;
D O I
10.1103/PhysRevD.95.045010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As time passes, once simple quantum states tend to become more complex. For strongly coupled k-local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system-classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.
引用
收藏
页数:19
相关论文
共 24 条
  • [1] Holographic Complexity Equals Bulk Action?
    Brown, Adam R.
    Roberts, Daniel A.
    Susskind, Leonard
    Swingle, Brian
    Zhao, Ying
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (19)
  • [2] Complexity, action, and black holes
    Brown, Adam R.
    Roberts, Daniel A.
    Susskind, Leonard
    Swingle, Brian
    Zhao, Ying
    [J]. PHYSICAL REVIEW D, 2016, 93 (08)
  • [3] Dowling M. R., ARXIVQUANTPH0701004
  • [4] THERMODYNAMICS OF BLACK-HOLES IN ANTI-DESITTER SPACE
    HAWKING, SW
    PAGE, DN
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) : 577 - 588
  • [5] Black holes as mirrors: quantum information in random subsystems
    Hayden, Patrick
    Preskill, John
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09):
  • [6] Kitaev A., 2015, SIMPLE MODEL Q UNPUB
  • [7] Kitaev A., 2014, FUND PHYS PRIZ UNPUB
  • [8] Ultimate physical limits to computation
    Lloyd, S
    [J]. NATURE, 2000, 406 (6799) : 1047 - 1054
  • [9] Remarks on the Sachdev-Ye-Kitaev model
    Maldacena, Juan
    Stanford, Douglas
    [J]. PHYSICAL REVIEW D, 2016, 94 (10)
  • [10] A bound on chaos
    Maldacena, Juan
    Shenker, Stephen H.
    Stanford, Douglas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):