Quantum complexity and negative curvature

被引:122
作者
Brown, Adam R. [1 ]
Susskind, Leonard [1 ]
Zhao, Ying [1 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
STATE;
D O I
10.1103/PhysRevD.95.045010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As time passes, once simple quantum states tend to become more complex. For strongly coupled k-local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system-classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.
引用
收藏
页数:19
相关论文
共 24 条
[1]   Holographic Complexity Equals Bulk Action? [J].
Brown, Adam R. ;
Roberts, Daniel A. ;
Susskind, Leonard ;
Swingle, Brian ;
Zhao, Ying .
PHYSICAL REVIEW LETTERS, 2016, 116 (19)
[2]   Complexity, action, and black holes [J].
Brown, Adam R. ;
Roberts, Daniel A. ;
Susskind, Leonard ;
Swingle, Brian ;
Zhao, Ying .
PHYSICAL REVIEW D, 2016, 93 (08)
[3]  
Dowling M. R., ARXIVQUANTPH0701004
[4]   THERMODYNAMICS OF BLACK-HOLES IN ANTI-DESITTER SPACE [J].
HAWKING, SW ;
PAGE, DN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :577-588
[5]   Black holes as mirrors: quantum information in random subsystems [J].
Hayden, Patrick ;
Preskill, John .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09)
[6]  
Kitaev A., 2015, SIMPLE MODEL Q UNPUB
[7]  
Kitaev A., 2014, FUND PHYS PRIZ UNPUB
[8]   Ultimate physical limits to computation [J].
Lloyd, S .
NATURE, 2000, 406 (6799) :1047-1054
[9]   Remarks on the Sachdev-Ye-Kitaev model [J].
Maldacena, Juan ;
Stanford, Douglas .
PHYSICAL REVIEW D, 2016, 94 (10)
[10]   A bound on chaos [J].
Maldacena, Juan ;
Shenker, Stephen H. ;
Stanford, Douglas .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08)