Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows

被引:7
|
作者
Sevilla, Ruben [1 ]
Borchini, Luca [1 ,2 ]
Giacomini, Matteo [2 ,3 ]
Huerta, Antonio [2 ,3 ]
机构
[1] Swansea Univ, Coll Engn, Zienkiewicz Ctr Computat Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Univ Politecn Cataluna, ETS Ingenieros Caminos Canales & Puertos, Lab Calcul Numer LaCaN, Barcelona, Spain
[3] Ctr Int Metodes Numer Engn CIMNE, Barcelona, Spain
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Reduced order model; Geometry parametrisation; Hybridisable discontinuous Galerkin (HDG); Proper generalised decomposition (PGD); PROPER GENERALIZED DECOMPOSITION; HDG METHODS; OPTIMIZATION; REDUCTION; DIFFUSION; NEFEM;
D O I
10.1016/j.cma.2020.113397
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a novel computational framework for the solution of geometrically parametrised flow problems governed by the Stokes equation. The proposed method uses a high-order hybridisable discontinuous Galerkin formulation and the proper generalised decomposition rationale to construct an off-line solution for a given set of geometric parameters. The generalised solution contains the information for all the geometric parameters in a user-defined range and it can be used to compute sensitivities. The proposed approach circumvents many of the weaknesses of other approaches based on the proper generalised decomposition for computing generalised solutions of geometrically parametrised problems. Four numerical examples show the optimal mesh convergence properties of the proposed method and demonstrate its applicability in two and three dimensions, with particular emphasis on parametrised flows in microfluidics. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Local discontinuous Galerkin methods for the Stokes system
    Cockburn, B
    Kanschat, G
    Schotzau, D
    Schwab, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 319 - 343
  • [22] Trefftz discontinuous Galerkin discretization for the Stokes problem
    Lederer, Philip L.
    Lehrenfeld, Christoph
    Stocker, Paul
    NUMERISCHE MATHEMATIK, 2024, 156 (03) : 979 - 1013
  • [23] Hp discontinuous Galerkin approximations for the Stokes problem
    Toselli, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (11): : 1565 - 1597
  • [24] Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows
    Nigro, A.
    Ghidoni, A.
    Rebay, S.
    Bassi, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (09) : 549 - 574
  • [25] Discontinuous Galerkin finite element method for the numerical solution of viscous compressible flows
    Dolejsí, V
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 260 - 268
  • [26] A hybridizable discontinuous Galerkin method for Stokes flow
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 582 - 597
  • [27] A STAGGERED DISCONTINUOUS GALERKIN METHOD FOR THE STOKES SYSTEM
    Kim, Hyea Hyun
    Chung, Eric T.
    Lee, Chak Shing
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3327 - 3350
  • [28] An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations
    Bassi, F.
    Crivellini, A.
    Di Pietro, D. A.
    Rebay, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) : 794 - 815
  • [29] Spectral p-multigrid discontinuous Galerkin solution of the Navier-Stokes equations
    Bassi, F.
    Franchina, N.
    Ghidoni, A.
    Rebay, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (11) : 1540 - 1558
  • [30] Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, J. Taylor
    Kapadia, Sagar
    COMPUTERS & FLUIDS, 2014, 100 : 13 - 29