Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows

被引:7
|
作者
Sevilla, Ruben [1 ]
Borchini, Luca [1 ,2 ]
Giacomini, Matteo [2 ,3 ]
Huerta, Antonio [2 ,3 ]
机构
[1] Swansea Univ, Coll Engn, Zienkiewicz Ctr Computat Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Univ Politecn Cataluna, ETS Ingenieros Caminos Canales & Puertos, Lab Calcul Numer LaCaN, Barcelona, Spain
[3] Ctr Int Metodes Numer Engn CIMNE, Barcelona, Spain
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Reduced order model; Geometry parametrisation; Hybridisable discontinuous Galerkin (HDG); Proper generalised decomposition (PGD); PROPER GENERALIZED DECOMPOSITION; HDG METHODS; OPTIMIZATION; REDUCTION; DIFFUSION; NEFEM;
D O I
10.1016/j.cma.2020.113397
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a novel computational framework for the solution of geometrically parametrised flow problems governed by the Stokes equation. The proposed method uses a high-order hybridisable discontinuous Galerkin formulation and the proper generalised decomposition rationale to construct an off-line solution for a given set of geometric parameters. The generalised solution contains the information for all the geometric parameters in a user-defined range and it can be used to compute sensitivities. The proposed approach circumvents many of the weaknesses of other approaches based on the proper generalised decomposition for computing generalised solutions of geometrically parametrised problems. Four numerical examples show the optimal mesh convergence properties of the proposed method and demonstrate its applicability in two and three dimensions, with particular emphasis on parametrised flows in microfluidics. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Hybridisable Discontinuous Galerkin Formulation of Compressible Flows
    Jordi Vila-Pérez
    Matteo Giacomini
    Ruben Sevilla
    Antonio Huerta
    Archives of Computational Methods in Engineering, 2021, 28 : 753 - 784
  • [2] Hybridisable Discontinuous Galerkin Formulation of Compressible Flows
    Vila-Perez, Jordi
    Giacomini, Matteo
    Sevilla, Ruben
    Huerta, Antonio
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (02) : 753 - 784
  • [3] A superconvergent hybridisable discontinuous Galerkin method for linear elasticity
    Sevilla, Ruben
    Giacomini, Matteo
    Karkoulias, Alexandros
    Huerta, Antonio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (02) : 91 - 116
  • [4] MIXED DISCONTINUOUS GALERKIN METHOD FOR QUASI-NEWTONIAN STOKES FLOWS
    Qian, Yanxia
    Wang, Fei
    Yan, Wenjing
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 885 - 910
  • [5] HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB
    Giacomini, Matteo
    Sevilla, Ruben
    Huerta, Antonio
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) : 1941 - 1986
  • [6] HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB
    Matteo Giacomini
    Ruben Sevilla
    Antonio Huerta
    Archives of Computational Methods in Engineering, 2021, 28 : 1941 - 1986
  • [7] Solution of cavitating compressible flows using Discontinuous Galerkin discretisation
    Papoutsakis, Andreas
    Koukouvinis, Phoevos
    Gavaises, Manolis
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 410
  • [8] Solution of cavitating compressible flows using Discontinuous Galerkin discretisation
    Papoutsakis A.
    Koukouvinis P.
    Gavaises M.
    Journal of Computational Physics, 2020, 410
  • [9] High-order hybridisable discontinuous Galerkin method for the gas kinetic equation
    Su, Wei
    Wang, Peng
    Zhang, Yonghao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (08) : 335 - 342
  • [10] GMRES Discontinuous Galerkin solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 197 - 208