Existence and regularity for mixtures of micromagnetic materials

被引:15
作者
Acerbi, Emilio
Fonseca, Irene [1 ]
Mingione, Giuseppe
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2072期
关键词
micromagnetics; constraints; quasi-minimizer; decay lemma; deviation;
D O I
10.1098/rspa.2006.1655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new model for the energy of a mixture of micromagnetic materials is introduced within the context of functions with special bounded variation. Existence and regularity for the solution of an optimal design problem in micromagnetics are obtained.
引用
收藏
页码:2225 / 2243
页数:19
相关论文
共 18 条
[1]  
Acerbi E, 2002, PROG NONLIN, V51, P1
[2]  
Ambrosio L., 1997, ANN SCUOLA NORM SUP, V24, P39
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]  
Ambrosio L., 1994, ANN SCUOLA NORM SUP, V24, P1
[5]   ASYMPTOTIC-BEHAVIOR OF THE LANDAU-LIFSHITZ MODEL OF FERROMAGNETISM [J].
ANZELLOTTI, G ;
BALDO, S ;
VISINTIN, A .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (02) :171-192
[6]  
Brown WFJr, 1963, MICROMAGNETICS
[7]  
Carriero M., 1991, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V18, P321
[8]   Absolute minimizers for some ferromagnetic energies [J].
Dacorogna, B ;
Fonseca, I .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (06) :497-500
[9]   ENERGY MINIMIZERS FOR LARGE FERROMAGNETIC BODIES [J].
DESIMONE, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 125 (02) :99-143
[10]  
DeSimone A., 2000, ICIAM 99 EDINBURGH, V99, P175