A Generalist Predator and the Planar Zero-Hopf Bifurcation

被引:6
作者
Miguel Valenzuela, Luis [1 ]
Falconi, Manuel [2 ]
Ble, Gamaliel [3 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, C Univ, Mexico City 04510, DF, Mexico
[3] UJAT, Div Acad Ciencias Basicas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2017年 / 27卷 / 03期
关键词
Predator-prey model; Hopf bifurcation; planar zero-Hopf bifurcation; Holling-Tanner model; generalist predator; PREY SYSTEM; STABILITY; MODEL;
D O I
10.1142/S0218127417500341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A typical approach for searching periodic orbits of planar dynamical systems is through the Hopf bifurcation. In this work we present a family of predator-prey models with a generalist predator which does not exhibit a Hopf bifurcation, but a planar zero-Hopf bifurcation; that means, in the whole bifurcation process the eigenvalues of the linear approximation around the equilibrium points remain as pure imaginary. Similar models with a nongeneralist predator always possess a Hopf bifurcation.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1973, Qualitative Theory of Second- Order Dynamic Systems
[2]  
Arrowsmith D.K., 1992, Dynamical Systems
[3]  
Beltrami E., 1987, MATH DYNAMICS MODELI
[4]   The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing [J].
Braza, PA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (03) :889-904
[5]  
Falconi M, 2013, SCI MATH JAPONICAE, V76, P119
[6]  
Fernández-Arhex Valeria, 2004, Ecol. austral, V14, P83
[7]  
Gasull A., 1997, Publ. Mat, V41, P149, DOI DOI 10.5565/PUBLMAT_
[8]   MULTISTABILITY ON A LESLIE-GOWER TYPE PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE [J].
Gonzalez-Yanez, Betsabe ;
Gonzalez-Olivares, Eduardo ;
Mena-Lorca, Jaime .
BIOMAT 2006, 2007, :359-+
[9]  
Holling C. S., 1959, Canadian Entomologist, V91, P385
[10]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783