Predictive value of SAR based quality indicators for head and neck hyperthermia treatment quality

被引:26
作者
Bellizzi, Gennaro G. [1 ,2 ,3 ]
Drizdal, Tomas [2 ,4 ]
van Rhoon, Gerard C. [2 ]
Crocco, Lorenzo [3 ]
Isernia, Tommaso [1 ,3 ]
Paulides, Margarethus M. [2 ,5 ]
机构
[1] Univ Mediterranea Reggio, DIIES, Reggio Di Calabria, Italy
[2] Erasmus MC, Dept Radiat Oncol, Hyperthermia Unit, Rotterdam, Netherlands
[3] Environm Natl Res Council Italy, Inst Electromagnet Sensing, Naples, Italy
[4] Czech Tech Univ, Dept Biomed Technol, Prague, Czech Republic
[5] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
关键词
Treatment quality; head & neck; SAR indicators; hyperthermia treatment planning; Sim4Life; DEEP HYPERTHERMIA; CANCER; APPLICATOR; OPTIMIZATION; FREQUENCY; REDESIGN; FIELDS;
D O I
10.1080/02656736.2019.1590652
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Hyperthermia treatment quality determines treatment effectiveness as shown by the clinically derived thermal-dose effect relations. SAR based optimization factors are used as possible surrogate for temperature, since they are not affected by thermal tissue properties uncertainty and variations. Previously, target coverage (TC) at the 25% and 50% iso-SAR level was shown predictive for treatment outcome in superficial hyperthermia and the target-to-hot-spot-quotient (THQ) was shown to highly correlate with predictive temperature in deep pelvic hyperthermia. Here, we investigate the correlation with temperature for THQ and TC using an 'intermediate' scenario: semi-deep hyperthermia in the head & neck region using the HYPERcollar3D. Methods: Fifteen patient-specific models and two different planning approaches were used, including random perturbations to circumvent optimization bias. The predicted SAR indicators were compared to predicted target temperature distribution indicators T50 and T90, i.e., the median and 90th percentile temperature respectively. Results: The intra-patient analysis identified THQ, TC25 and TC50 as good temperature surrogates: with a mean correlation coefficient R-T50(2) = 0.72 and R-T90(2)=0.66. The inter-patient analysis identified the highest correlation with TC25 (R-T50(2) = 0.76, R-T90(2)=0.54) and TC50 (R-T50(2) = 0.74, R-T90(2) = 0.56). Conclusion: Our investigation confirmed the validity of our current strategy for deep hyperthermia in the head & neck based on a combination of THQ and TC25. TC50 was identified as the best surrogate since it enables optimization and patient inclusion decision making using one single parameter.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 41 条
[1]   The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region [J].
Bellizzi, G. G. ;
Drizdal, T. ;
van Rhoon, G. C. ;
Crocco, L. ;
Isernia, T. ;
Paulides, M. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (01)
[2]   3-D Field Intensity Shaping via Optimized Multi-Target Time Reversal [J].
Bellizzi, Gennaro G. ;
Bevacqua, Martina T. ;
Crocco, Lorenzo ;
Isernia, Tommaso .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (08) :4380-4385
[3]   Three-Dimensional Field Intensity Shaping: The Scalar Case [J].
Bellizzi, Gennaro G. ;
Iero, Domenica A. M. ;
Crocco, Lorenzo ;
Isernia, Tommaso .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (03) :360-363
[4]  
Bellizzi GG, 2018, 12 EUR C ANT PROP EU
[5]   Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples [J].
Bucci, OM ;
Gennarelli, C ;
Savarese, C .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (03) :351-359
[6]  
Canters RAM, 2013, STRAHLENTHER ONKOL, V189, P74, DOI 10.1007/s00066-012-0241-x
[7]   A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation [J].
Canters, R. A. M. ;
Wust, P. ;
Bakker, J. F. ;
Van Rhoon, G. C. .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2009, 25 (07) :593-608
[8]   Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia [J].
Cappiello, G. ;
Mc Ginley, B. ;
Elahi, M. A. ;
Drizdal, T. ;
Paulides, M. M. ;
Glavin, M. ;
O'Halloran, M. ;
Jones, E. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (08) :1875-1885
[9]   Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study [J].
Crezee, J. ;
Van Haaren, P. M. A. ;
Westendorp, H. ;
De Greef, M. ;
Kok, H. P. ;
Wiersma, J. ;
Van Stam, G. ;
Sijbrands, J. ;
Vording, P. Zum Vorde Sive ;
Van Dijk, J. D. P. ;
Hulshof, M. C. C. M. ;
Bel, A. .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2009, 25 (07) :581-592
[10]   Effects of waterbolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator [J].
de Bruijne, M ;
Samaras, T ;
Bakker, JF ;
Van Rhoon, GC .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2006, 22 (01) :15-28