Risk based Government Audit Planning using Naive Bayes Classifiers`

被引:3
作者
Balaniuk, Remis [1 ,2 ]
Bessiere, Pierre [3 ,4 ]
Mazer, Emmanuel [4 ]
Cobbe, Paulo [1 ,5 ]
机构
[1] Univ Catolica Brasilia, MGCTI, SGAN 916 Modulo B Asa Norte, BR-70790160 Brasilia, DF, Brazil
[2] Tribunal Contas Uniao, Setor Adm Fed Sul, BR-70042900 Brasilia, DF, Brazil
[3] LPPA Coll France, Dallas, TX 75231 USA
[4] CNRS, LIG INRIA, F-38334 Montbonnot St Martin, France
[5] UniCEUB Coll, Dept Informat Technol, BR-70790075 Brasilia, DF, Brazil
来源
ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS | 2012年 / 243卷
关键词
Data mining; naive Bayes; fraud detection; FRAUD DETECTION;
D O I
10.3233/978-1-61499-105-2-1313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider the application of a naive Bayes model for the evaluation of fraud risk connected with government agencies. This model applies probabilistic classifiers to support a generic risk assessment model, allowing for more efficient and effective use of resources for fraud detection in government transactions, and assisting audit agencies in transitioning from reactive to proactive fraud detection model.
引用
收藏
页码:1313 / 1323
页数:11
相关论文
共 15 条
[1]  
Coderre D., 1999, CPA J
[2]   Data mining: A competitive weapon for banking and retail industries [J].
Hormozi, AM ;
Giles, S .
INFORMATION SYSTEMS MANAGEMENT, 2004, 21 (02) :62-71
[3]  
Institute of Internal Auditors, 2009, INT PROF PRACT FRAM
[4]  
Mekhnacha Kamel, 2007, Revue d'Intelligence Artificielle, V21, P295, DOI 10.3166/ria.21.295-332
[5]   The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature [J].
Ngai, E. W. T. ;
Hu, Yong ;
Wong, Y. H. ;
Chen, Yijun ;
Sun, Xin .
DECISION SUPPORT SYSTEMS, 2011, 50 (03) :559-569
[6]   Models and model uncertainty in the context of risk analysis [J].
Nilsen, T ;
Aven, T .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 79 (03) :309-317
[7]  
Nilsen T., 2003, FDN RISK ANAL KNOWLE
[8]  
Organisation for Economic Co-operation and Development, 2010, ROUNDT COLL CORR PUB
[9]   Credit card fraud detection: A fusion approach using Dempster-Shafer theory and Bayesian learning [J].
Panigrahi, Suvasini ;
Kundu, Amlan ;
Sural, Shamik ;
Majumdar, A. K. .
INFORMATION FUSION, 2009, 10 (04) :354-363
[10]  
Phua C., 2005, ARTIF INTELL, P1