Sparse covariance matrix estimation in high-dimensional deconvolution

被引:7
|
作者
Belomestny, Denis [1 ,2 ]
Trabs, Mathias [3 ]
Tsybakov, Alexandre B. [4 ]
机构
[1] Duisburg Essen Univ, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
[2] Natl Res Univ, Higher Sch Econ, Shabolovka 26, Moscow 119049, Russia
[3] Univ Hamburg, Fac Math, Bundesstr 55, D-20146 Hamburg, Germany
[4] ENSAE, CREST, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
关键词
Fourier methods; minimax convergence rates; severely ill-posed inverse problem; thresholding; OPTIMAL RATES; DENSITY-ESTIMATION; MINIMAX ESTIMATION; CONVERGENCE; NOISE;
D O I
10.3150/18-BEJ1040A
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the estimation of the covariance matrix Sigma of a p-dimensional normal random vector based on n independent observations corrupted by additive noise. Only a general nonparametric assumption is imposed on the distribution of the noise without any sparsity constraint on its covariance matrix. In this high-dimensional semiparametric deconvolution problem, we propose spectral thresholding estimators that are adaptive to the sparsity of Sigma. We establish an oracle inequality for these estimators under model miss-specification and derive non-asymptotic minimax convergence rates that are shown to be logarithmic in n/log p. We also discuss the estimation of low-rank matrices based on indirect observations as well as the generalization to elliptical distributions. The finite sample performance of the threshold estimators is illustrated in a numerical example.
引用
收藏
页码:1901 / 1938
页数:38
相关论文
共 50 条
  • [21] Sparse estimation of high-dimensional correlation matrices
    Cui, Ying
    Leng, Chenlei
    Sun, Defeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 390 - 403
  • [22] Sparse Covariance Matrix Estimation With Eigenvalue Constraints
    Liu, Han
    Wang, Lie
    Zhao, Tuo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 439 - 459
  • [23] Factorized estimation of high-dimensional nonparametric covariance models
    Zhang, Jian
    Li, Jie
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (02) : 542 - 567
  • [24] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [25] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [26] Adaptive banding covariance estimation for high-dimensional multivariate longitudinal data
    Qian, Fang
    Zhang, Weiping
    Chen, Yu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 906 - 938
  • [27] Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions
    Cai, T. Tony
    Liang, Tengyuan
    Zhou, Harrison H.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 161 - 172
  • [28] Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis
    Li, Danning
    Srinivasan, Arun
    Chen, Qian
    Xue, Lingzhou
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1090 - 1100
  • [29] Distributed Sparse Covariance Matrix Estimation
    Xia, Wenfu
    Zhao, Ziping
    Sun, Ying
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [30] SHARP OPTIMALITY FOR HIGH-DIMENSIONAL COVARIANCE TESTING UNDER SPARSE SIGNALS
    Chen, Song xi
    Qiu, Yumou
    Zhang, Shuyi
    ANNALS OF STATISTICS, 2023, 51 (05) : 1921 - 1945