Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions

被引:22
作者
Choudhary, Sangita [1 ]
Daftardar-Gejji, Varsha [1 ]
机构
[1] Univ Pune, Dept Math, Pune 411007, Maharashtra, India
关键词
fractional calculus; multi order Mittag-Leffler functions; fractional differential equations; periodic/ anti-periodic boundary conditions; DERIVATIVES;
D O I
10.2478/s13540-014-0172-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present manuscript we analyze non-linear multi-order fractional differential equation L(D)u(t) = f(t, u(t)), t is an element of [0, T], T > 0, where L(D) = lambda D-c(n)alpha n + lambda(n-1) D-c(alpha n-1) + . . . + lambda(1) D-c(alpha 1) + lambda(0) D-c(alpha 0), lambda(i) is an element of R (i = 0, 1, . . . , n), lambda(n) not equal 0, 0 <= alpha(0) < alpha(1) < . . . < alpha(n-1) < alpha(n) < 1, and D-c(alpha) denotes the Caputo fractional derivative of order alpha. We find the Greens functions for this equation corresponding to periodic/anti-periodic boundary conditions in terms of the two-parametric functions of Mittag-Leffler type. Further we prove existence and uniqueness theorems for these fractional boundary value problems.
引用
收藏
页码:333 / 347
页数:15
相关论文
共 16 条
[1]   Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative [J].
Ahmad, Bashir ;
Nieto, Juan J. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :451-462
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   On a nonlinear fractional differential equation on partially ordered metric spaces [J].
Baleanu, Dumitru ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[4]  
Bazhlekova E., 2013, Complex Analysis and Applications '13, Sofia, P55
[5]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[6]  
Benchohra M, 2010, BULL MATH ANAL APPL, V2, P7
[7]  
Daftardar-Gejji V., 2013, Fractional calculus: Theory and applications
[8]   Boundary value problems for multi-term fractional differential equations [J].
Daftardar-Gejji, Varsha ;
Bhalekar, Sachin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :754-765
[9]   Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives [J].
Daftardar-Gejji, Varsha ;
Jafari, Hossein .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1026-1033
[10]   FRACTIONAL BOUNDARY VALUE PROBLEMS: ANALYSIS AND NUMERICAL METHODS [J].
Ford, Neville J. ;
Luisa Morgado, M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) :554-567