Multi-trial Guruswami-Sudan decoding for generalised Reed-Solomon codes

被引:6
作者
Nielsen, Johan S. R. [1 ]
Zeh, Alexander [1 ,2 ]
机构
[1] Univ Ulm, Inst Commun Engn, D-89069 Ulm, Germany
[2] Ecole Polytech, Res Ctr INRIA Saclay Ile de France, F-75230 Paris, France
关键词
Guruswami-Sudan; List decoding; Multi-trial; Reed-Solomon codes; Re-encoding transformation; POLYNOMIALS; EQUATIONS;
D O I
10.1007/s10623-014-9951-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An iterated refinement procedure for the Guruswami-Sudan list decoding algorithm for Generalised Reed-Solomon codes based on Alekhnovich's module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list of closest codewords within an intermediate radius can be performed with improved average-case complexity while retaining the worst-case complexity. We provide a detailed description of the module minimisation, reanalysing the Mulders-Storjohann algorithm and drawing new connections to both Alekhnovich's algorithm and Lee-O'Sullivan's. Furthermore, we show how to incorporate the re-encoding technique of Kotter and Vardy into our iterative algorithm.
引用
收藏
页码:507 / 527
页数:21
相关论文
共 50 条
[21]   On Cauchy Matrices for Remainder Decoding of Reed-Solomon Codes [J].
Ma, Chingwo .
IEEE COMMUNICATIONS LETTERS, 2009, 13 (09) :688-690
[22]   Iterative list decoding approach for reed-solomon codes [J].
Zhijun Z. ;
Kai N. ;
Chao D. .
Journal of China Universities of Posts and Telecommunications, 2019, 26 (03) :8-14
[23]   A Fast Method for Decoding Reed-Solomon Codes on Processors [J].
Chen, Yan-Haw ;
Huang, Ching-Fu ;
Chu, Shao-I ;
Lien, Chih-Yuan ;
Kao, Chien-En .
2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, :293-296
[24]   Bounds on List Decoding of Linearized Reed-Solomon Codes [J].
Puchinger, Sven ;
Rosenkilde, Johan .
2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, :154-159
[25]   Improved decoding of Folded Reed-Solomon and Multiplicity Codes [J].
Kopparty, Swastik ;
Ron-Zewi, Noga ;
Saraf, Shubhangi ;
Wootters, Mary .
2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, :212-223
[26]   GENERALIZED SYNDROME POLYNOMIALS FOR DECODING REED-SOLOMON CODES [J].
ARAKI, K ;
FUJITA, I .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1992, E75A (08) :1026-1029
[27]   Generic Reed-Solomon Codes Achieve List-Decoding Capacity [J].
Brakensiek, Joshua ;
Gopi, Sivakanth ;
Makam, Visu .
PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, :1488-1501
[28]   List decoding of Reed-Solomon codes from a Grobner basis perspective [J].
Lee, Kwankyu ;
O'Sullivan, Michael E. .
JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (09) :645-658
[29]   Efficient decoding of Reed-Solomon codes beyond half the minimum distance [J].
Roth, RM ;
Ruckenstein, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :246-257
[30]   Algebraic Chase Decoding of Reed-Solomon Codes Using Module Minimisation [J].
Chen, Li ;
Bossert, Martin .
PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, :305-309