ON NONRADIAL SINGULAR SOLUTIONS OF SUPERCRITICAL BIHARMONIC EQUATIONS

被引:7
作者
Guo, Zongming [1 ]
Wei, Juncheng [2 ]
Yang, Wen [2 ,3 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Natl Taiwan Univ, Ctr Adv Study Theoret Sci, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
nonradial solutions; biharmonic supercritical equations; gluing method; ENTIRE RADIAL SOLUTIONS; LANE-EMDEN EQUATION; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; R-N; CLASSIFICATION; ASYMPTOTICS; NONLINEARITY; STABILITY;
D O I
10.2140/pjm.2016.284.395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a gluing method for fourth-order ODEs and construct infinitely many nonradial singular solutions for a biharmonic equation with supercritical exponent.
引用
收藏
页码:395 / 430
页数:36
相关论文
共 20 条
[1]  
[Anonymous], 2002, Advances in Partial Di erential Equations
[2]  
[Anonymous], 1982, Ordinary differential equations
[3]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[4]   SEMILINEAR ELLIPTIC-EQUATIONS AND SUPERCRITICAL GROWTH [J].
BUDD, C ;
NORBURY, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 68 (02) :169-197
[5]  
Dancer EN, 2012, INDIANA U MATH J, V61, P1971
[6]   Finite Morse index solutions of an elliptic equation with supercritical exponent [J].
Dancer, E. N. ;
Du, Yihong ;
Guo, Zongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3281-3310
[7]   A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem [J].
Davila, Juan ;
Dupaigne, Louis ;
Wang, Kelei ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2014, 258 :240-285
[8]   On the classification of solutions of the Lane-Emden equation on unbounded domains of RN [J].
Farina, Alberto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (05) :537-561
[9]   Radial entire solutions for supercritical biharmonic equations [J].
Gazzola, F ;
Grunau, HC .
MATHEMATISCHE ANNALEN, 2006, 334 (04) :905-936
[10]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598