History of Research on the Plant Hormone Ethylene

被引:78
|
作者
Bakshi, Arkadipta [1 ]
Shemansky, Jennifer M. [2 ]
Chang, Caren [2 ]
Binder, Brad M. [1 ,3 ]
机构
[1] Univ Tennessee, Genome Sci & Technol Program, Knoxville, TN 37996 USA
[2] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
[3] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Ethylene; Biosynthesis; Illuminating gas; Signal transduction; Triple response; Mutant; Arabidopsis; Hormone; ENCODING 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE; F-BOX PROTEINS; S-ADENOSYLMETHIONINE SYNTHETASE; HISTIDINE KINASE-ACTIVITY; PHASEOLUS-VULGARIS L; RECEPTOR GENE FAMILY; RAF-LIKE KINASE; RING E3 LIGASE; ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION;
D O I
10.1007/s00344-015-9522-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethylene is the simplest of the olefin gasses and was the first known gaseous biological signaling molecule. It is synthesized by plants during certain stages of development and in response to abiotic and biotic stresses. Ethylene affects many aspects of plant growth, development as well as responses to environmental cues. Research leading to the discovery of ethylene as a plant hormone started in the 1800s with scientists examining the effects of illuminating gas on plants. In 1901, Dimitry Neljubow determined that ethylene is the active component of illuminating gas that affects plants and thus launched this important field of research. It is generally accepted that in 1934 Richard Gane provided the conclusive evidence that plants biosynthesize ethylene. This early research showed that ethylene is both biosynthesized and sensed by plants. From the 1930s to the 1960s, there was scant research on ethylene as a hormone because many researchers did not believe that ethylene was indeed a plant hormone and because that the detection of ethylene was difficult. However, in the late 1950s, the application of gas chromatography led to an increased interest in ethylene research. From the 1960s through the early 1980s, the biochemical pathway for ethylene biosynthesis in plants was elucidated and membrane-bound ethylene-binding sites were discovered and characterized. The use of Arabidopsis thaliana as a model plant system and the widespread use of molecular biological techniques starting in the 1980s correlates with a second and larger increase in ethylene research productivity. Information gleaned from this model plant is now being applied to many plant species. In recent years, detailed models for the regulation of ethylene biosynthesis and ethylene signal transduction have emerged. This article provides an overview of the key historical discoveries regarding ethylene as a plant hormone.
引用
收藏
页码:809 / 827
页数:19
相关论文
共 50 条
  • [11] The dual effects of ethylene on the negative gravicurvature of arabidopsis inflorescence, an intriguing action model for the plant hormone ethylene
    LU Bingwen
    2. Department of Mathematics
    3. Department of Biochemistry
    Institute of Genetics
    Chinese Science Bulletin, 2001, (04) : 279 - 283
  • [12] The dual effects of ethylene on the negative gravicurvature of arabidopsis inflorescence, an intriguing action model for the plant hormone ethylene
    Lu, BW
    Pei, LK
    Chan, WK
    Zhang, H
    Zhu, G
    Li, JY
    Li, N
    CHINESE SCIENCE BULLETIN, 2001, 46 (04): : 279 - 283
  • [13] Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development
    Zdarska, Marketa
    Dobisova, Tereza
    Gelova, Zuzana
    Pernisova, Marketa
    Dabravolski, Siarhei
    Hejatko, Jan
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (16) : 4913 - 4931
  • [14] The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha
    Bharadwaj, Priyanka S.
    Sanchez, Lizbeth
    Li, Dongdong
    Enyi, Divine
    van de Poel, Bram
    Chang, Caren
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [15] Perception of the plant hormone ethylene: known-knowns and known-unknowns
    Light, Kenneth M.
    Wisniewski, John A.
    Vinyard, W. Andrew
    Kieber-Emmons, Matthew T.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2016, 21 (5-6): : 715 - 728
  • [16] MAPK signaling in plant hormone ethylene signal transduction
    Yoo, Sang-Dong
    Sheen, Jen
    PLANT SIGNALING & BEHAVIOR, 2008, 3 (10) : 848 - 849
  • [17] Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase
    Gamalero, Elisa
    Lingua, Guido
    Glick, Bernard R.
    BIOLOGY-BASEL, 2023, 12 (08):
  • [18] Chemical and biochemical aspects of the biosynthesis of ethylene, a plant hormone.
    Stella, L
    Wouters, S
    Baldellon, F
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1996, 133 (05): : 441 - 455
  • [19] Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions
    Nascimento, Francisco X.
    Rossi, Marcio J.
    Glick, Bernard R.
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [20] Light Modulates Ethylene Synthesis, Signaling, and Downstream Transcriptional Networks to Control Plant Development
    Harkey, Alexandria F.
    Yoon, Gyeong Mee
    Seo, Dong Hye
    DeLong, Alison
    Muday, Gloria K.
    FRONTIERS IN PLANT SCIENCE, 2019, 10