Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson-Boltzmann equation

被引:26
|
作者
Kitazumi, Yuki [1 ,3 ]
Shirai, Osamu [1 ]
Yamamoto, Masahiro [2 ,3 ]
Kano, Kenji [1 ,3 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Sakyo Ku, Sakyo, Kyoto 6068502, Japan
[2] Konan Univ, Dept Chem, Higashinada Ku, Kobe, Hyogo 6588501, Japan
[3] CREST, JST, Kawaguchi, Saitama 3320012, Japan
基金
日本科学技术振兴机构;
关键词
Electrical double layer; Poisson-Boltzmann equation; Microporous electrode; Double layer capacitance; ELECTROLYTES;
D O I
10.1016/j.electacta.2013.08.117
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The structure of the diffuse double layer around a nm-sized micropore on porous electrodes has been studied by numerical simulation using the Poisson-Boltzmann equation. The double layer capacitance of the microporous electrode strongly depends on the electrode potential, the electrolyte concentration, and the size of the micropore. The potential and the electrolyte concentration dependence of the capacitance is different from that of the planner electrode based on the Gouy's theory. The overlapping of the diffuse double layer becomes conspicuous in the micropore. The overlapped diffuse double layer provides the mild electric field. The intensified electric field exists at the rim of the orifice of the micropore because of the expansion of the diffuse double layers. The characteristic features of microporous electrodes are caused by the heterogeneity of the electric field around the micropores. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 28 条
  • [1] ON THE STRUCTURE OF DOUBLE LAYERS IN POISSON-BOLTZMANN EQUATION
    Fontelos, Marco A.
    Gamboa, Lucia B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06): : 1939 - 1967
  • [2] The geometry behind numerical solvers of the Poisson-Boltzmann equation
    Shi, Xinwei
    Koehl, Patrice
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) : 1032 - 1050
  • [3] Adaptive numerical method for Poisson-Boltzmann equation and its application
    Dyshlovenko, PE
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 335 - 338
  • [4] Analytical solutions of the Poisson-Boltzmann equation within an interstitial electrical double layer in various geometries
    Saboorian-Jooybari, Hadi
    Chen, Zhangxin
    CHEMICAL PHYSICS, 2019, 522 : 147 - 162
  • [5] A Numerical Method for Poisson-Boltzmann Equation Using the Lambert W Function
    Yoon, Nam-Sik
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2023, 32 (03): : 69 - 72
  • [6] Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications
    Lu, B. Z.
    Zhou, Y. C.
    Holst, M. J.
    McCammon, J. A.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) : 973 - 1009
  • [7] Reliable Computer Simulation Methods for Electrostatic Biomolecular Models Based on the Poisson-Boltzmann Equation
    Kraus, Johannes
    Nakov, Svetoslav
    Repin, Sergey
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 643 - 676
  • [8] Accuracy assessment of numerical solutions of the nonlinear Poisson-Boltzmann equation for charged colloidal particles
    Qian, YX
    Bowen, WR
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 201 (01) : 7 - 12
  • [9] A Poisson-Boltzmann description for the double-layer capacitance of an electrolytic cell
    Ribeiro de Almeida, R. R.
    Evangelista, L. R.
    Barbero, G.
    PHYSICS LETTERS A, 2012, 376 (45) : 3382 - 3385
  • [10] Finite electric boundary-layer solutions of a generalized Poisson-Boltzmann equation
    Clarke, Bon M. N.
    Stiles, Peter J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2178):