Inverse problem for the Schrodinger operator in an unbounded strip

被引:15
作者
Cardoulis, L. [1 ]
Cristofol, M. [2 ]
Gaitan, P. [2 ]
机构
[1] Univ Toulouse 1, Ceremath MIP, UMR 5640, F-31000 Toulouse, France
[2] Univ Aix Marseille 1, CMI, CNRS, UMR 6632, F-13453 Marseille 13, France
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2008年 / 16卷 / 02期
关键词
Inverse problem; Schrodinger operator; Carleman estimate;
D O I
10.1515/JIIP.2008.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the operator H := i partial derivative(t) + del . (c del) in an unbounded strip Omega in R-2, where c(x, y) is an element of C-3((Omega) over bar). We prove an adapted global Carleman estimate and an energy estimate for this operator. Using these estimates, we give a stability result for the diffusion coefficient c(x, y).
引用
收藏
页码:127 / 146
页数:20
相关论文
共 25 条
[1]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[2]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[3]  
Buchanan J., 2004, Marine Acoustics: Direct and Inverse Problems
[4]  
Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244
[5]  
Bukhgeim AL, 1999, VOLTERRA EQUATIONS I
[6]  
BURGOSGONZALEZ M, 2005, C R ACAD SCI PARIS 1, V340
[7]   Geometrically induced discrete spectrum in curved tubes [J].
Chenaud, B ;
Duclos, P ;
Freitas, P ;
Krejcirík, D .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 23 (02) :95-105
[8]   Identification of the size, proportions and location of a soft body of revolution in a shallow-water waveguide [J].
Cristini, P ;
Wirgin, A .
INVERSE PROBLEMS, 2000, 16 (06) :1727-1739
[9]   Inverse problem for a perturbed stratified strip in two dimensions [J].
Cristofol, M ;
Gaitan, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (01) :1-17
[10]  
Cristofol M., 2005, REV ROUMAINE MATH PU, V50, P153