On Laplacian eigenvalues of a graph

被引:16
作者
Zhou, B [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2004年 / 59卷 / 03期
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; line graph; bipartite graph;
D O I
10.1515/zna-2004-0310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let G be a connected graph with n vertices and in edges. The Laplacian eigenvalues are denoted by mu(1) (G) greater than or equal to mu(2) (G) greater than or equal to(...)greater than or equal to mu(n-1) (G) > mu(n) (G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for mu(1) (G) + (...) + mu(k) (G) and lower bounds for mu(n-1) (G) + (...) + mu(n-k) (G) in terms of n and m, where 1 less than or equal to k less than or equal to n-2, and characterize the extremal cases. We also discuss a type of upper bounds for mu(1) (G) in terms of degree and 2-degree.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 11 条
[1]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
[2]   The spectral radius of graphs on surfaces [J].
Ellingham, MN ;
Zha, XY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (01) :45-56
[3]  
Gutman I, 2004, MATCH-COMMUN MATH CO, P83
[4]   Chemical applications of the Laplacian spectrum. VI. On the largest Laplacian eigenvalue of alkanes [J].
Gutman, I ;
Vidovic, D ;
Stevanovic, D .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2002, 67 (06) :407-413
[5]   On the Laplacian eigenvalues of a graph [J].
Li, JS ;
Zhang, XD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :305-307
[6]   de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph [J].
Li, JS ;
Pan, YL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 328 (1-3) :153-160
[7]  
MERRIS R, 1994, LINEAR ALGEBRA APPL, V198, P143
[8]   A note on Laplacian graph eigenvalues [J].
Merris, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :33-35
[9]   Sharp upper bounds for the Laplacian graph eigenvalues [J].
Pan, YL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 :287-295
[10]   Bounds for sums of eigenvalues and applications [J].
Rojo, O ;
Soto, R ;
Rojo, H .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (7-8) :1-15