Real-time characterization of the molecular epidemiology of an influenza pandemic

被引:29
作者
Hedge, J. [1 ]
Lycett, S. J. [1 ]
Rambaut, A. [1 ,2 ]
机构
[1] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh, Midlothian, Scotland
[2] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
基金
欧洲研究理事会; 英国惠康基金;
关键词
Bayesian phylogenetics; influenza; pandemic; parameter estimation; real-time; GROWTH-RATES; INFERENCE; DYNAMICS; SKYLINE; VIRUS;
D O I
10.1098/rsbl.2013.0331
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early characterization of the epidemiology and evolution of a pandemic is essential for determining the most appropriate interventions. During the 2009 H1N1 influenza A pandemic, public databases facilitated widespread sharing of genetic sequence data from the outset. We use Bayesian phylogenetics to simulate real-time estimates of the evolutionary rate, date of emergence and intrinsic growth rate (r(0)) of the pandemic from whole-genome sequences. We investigate the effects of temporal range of sampling and dataset size on the precision and accuracy of parameter estimation. Parameters can be accurately estimated as early as two months after the first reported case, from 100 genomes and the choice of growth model is important for accurate estimation of r(0). This demonstrates the utility of simple coalescent models to rapidly inform intervention strategies during a pandemic.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Real-time modelling of a pandemic influenza outbreak
    Birrell, Paul J.
    Pebody, Richard G.
    Charlett, Andre
    Zhang, Xu-Sheng
    De Angelis, Daniela
    HEALTH TECHNOLOGY ASSESSMENT, 2017, 21 (58) : 1 - +
  • [2] EFFICIENT REAL-TIME MONITORING OF AN EMERGING INFLUENZA PANDEMIC: HOW FEASIBLE?
    Birrell, Paul J.
    Wernisch, Lorenz
    Tom, Brian D. M.
    Held, Leonhard
    Roberts, Gareth O.
    Pebody, Richard G.
    De Angelis, Daniela
    ANNALS OF APPLIED STATISTICS, 2020, 14 (01) : 74 - 93
  • [3] Real-time prediction of influenza outbreaks in Belgium
    Miranda, Gisele H. B.
    Baetens, Jan M.
    Bossuyt, Nathalie
    Bruno, Odemir M.
    De Baets, Bernard
    EPIDEMICS, 2019, 28
  • [4] Comparison of two real-time RT-PCR-based systems for the detection and typing of the pandemic influenza A virus, 2009
    Lalle, Eleonora
    Bordi, Licia
    Meschi, Silvia
    Selleri, Marina
    Valli, Maria Beatrice
    Patella, Emilio
    Capobianchi, Maria Rosaria
    JOURNAL OF VIROLOGICAL METHODS, 2011, 177 (02) : 193 - 196
  • [5] The epidemiology of pandemic influenza A (H1N1) 2009
    Badur, Selim
    TURK PEDIATRI ARSIVI-TURKISH ARCHIVES OF PEDIATRICS, 2010, 45 : 25 - 30
  • [6] The epidemiology of influenza vaccination: implications for global vaccine supply for an influenza pandemic
    Fedson, DS
    OPTIONS FOR THE CONTROL OF INFLUENZA IV, 2001, 1219 : 723 - 731
  • [7] Pandemic Symptoms Real-Time Ranking Platform
    Ivanovski, Aleksandar
    Gusev, Marjan
    Zdraveski, Vladimir
    Aasa, Jesper
    2021 29TH TELECOMMUNICATIONS FORUM (TELFOR), 2021,
  • [8] Real-time surveillance systems: Applicability for the control of influenza in acute care
    Quiros-Gonzalez, Victor
    Rodriguez-Perez, Paz
    Haro-Perez, Ana Ma
    Jimenez-Rodriguez, Ma Mar
    Maderuelo-Fernandez, Jose Angel
    Eiros, Jose Ma
    INFLUENZA AND OTHER RESPIRATORY VIRUSES, 2020, 14 (03) : 331 - 339
  • [9] EFFECTIVE REAL-TIME ALLOCATION OF PANDEMIC INTERVENTIONS
    Dibble, Catherine
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 2211 - 2220
  • [10] Real-time reverse transcription-PCR assay for differentiating the Pandemic H1N1 2009 influenza virus from swine influenza viruses
    Hiromoto, Yasuaki
    Uchida, Yuko
    Takemae, Nobuhiro
    Hayashi, Tsuyoshi
    Tsuda, Tomoyuki
    Saito, Takehiko
    JOURNAL OF VIROLOGICAL METHODS, 2010, 170 (1-2) : 169 - 172