One-step pipetting and assembly of encoded chemical-laden microparticles for high-throughput multiplexed bioassays

被引:55
作者
Chung, Su Eun [1 ,2 ,3 ]
Kim, Jiyun [1 ,2 ,3 ]
Oh, Dong Yoon [1 ,3 ,4 ]
Song, Younghoon [1 ,2 ,3 ]
Lee, Sung Hoon [2 ]
Min, Seungki [2 ]
Kwon, Sunghoon [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Inst Basic Sci, Ctr Nanoparticle Res, Seoul 151744, South Korea
[2] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 151744, South Korea
[3] Seoul Natl Univ, Interuniv Semicond Res Ctr, Seoul 151744, South Korea
[4] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 151744, South Korea
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
新加坡国家研究基金会;
关键词
DRUG DISCOVERY; MICROWELL ARRAY; MICROFLUIDICS;
D O I
10.1038/ncomms4468
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One quantitative liquid handling method in conventional assay processes is pipetting, which delivers a precise volume of one sample at a time. As this process becomes laborious and time-consuming as the number of samples increases, researchers in individual laboratories need a way to conduct large-scale assays in a reasonable amount of time and at an affordable cost. Here we report a novel handling technique of chemical substances termed 'partipetting', which allows the one-step pipetting of various chemical-laden hydrogels. We pipette and assemble various types of encoded chemical-laden microparticles in microwell arrays in parallel. The combination of this heterogeneous particle chip and a cell chip induces the release of the chemicals from the hydrogels and, eventually, the chemicals treat the targets. Based on bioassay applications using partipetting, we show its capability in large-scale bioassays, without the need for high-throughput bioassay resources, owing to a reduction in the assay costs and time.
引用
收藏
页数:12
相关论文
共 29 条
  • [1] Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring
    Ahn, Joo-Myung
    Kim, Joong Hyun
    Kim, Ji Hoon
    Gu, Man Bock
    [J]. LAB ON A CHIP, 2010, 10 (20) : 2695 - 2701
  • [2] Drug repositioning: Identifying and developing new uses for existing drugs
    Ashburn, TT
    Thor, KB
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) : 673 - 683
  • [3] Encoding microcarriers by spatial selective photobleaching
    Braeckmans, K
    De Smedt, SC
    Roelant, C
    Leblans, M
    Pauwels, R
    Demeester, J
    [J]. NATURE MATERIALS, 2003, 2 (03) : 169 - 173
  • [4] High throughput screening in drug discovery
    Carnero A.
    [J]. Clinical and Translational Oncology, 2006, 8 (7) : 482 - 490
  • [5] Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels
    Chung, Su Eun
    Park, Wook
    Park, Hyunsung
    Yu, Kyoungsik
    Park, Namkyoo
    Kwon, Sunghoon
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (04)
  • [6] Rare earth-doped glass microbarcodes
    Dejneka, MJ
    Streltsov, A
    Pal, S
    Frutos, AG
    Powell, CL
    Yost, K
    Yuen, PK
    Müller, U
    Lahiri, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (02) : 389 - 393
  • [7] Lab-on-a-chip: microfluidics in drug discovery
    Dittrich, PS
    Manz, A
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (03) : 210 - 218
  • [8] Drug screening - Beyond the bottleneck
    Dove, A
    [J]. NATURE BIOTECHNOLOGY, 1999, 17 (09) : 859 - 863
  • [9] Drug discovery: A historical perspective
    Drews, J
    [J]. SCIENCE, 2000, 287 (5460) : 1960 - 1964
  • [10] SlipChip
    Du, Wenbin
    Li, Liang
    Nichols, Kevin P.
    Ismagilov, Rustem F.
    [J]. LAB ON A CHIP, 2009, 9 (16) : 2286 - 2292