Tailoring optical absorption in silicon nanostructures from UV to visible light: A TDDFT study

被引:9
作者
Hassan, Walid M. I. [1 ,2 ]
Anantram, M. P. [3 ]
Nekovei, Reza [4 ]
Khader, Mahmoud M. [1 ]
Verma, Amit [4 ]
机构
[1] Qatar Univ, Coll Engn, Gas Proc Ctr, PO 2713, Doha, Qatar
[2] Cairo Univ, Dept Chem, Fac Sci, Giza 12613, Egypt
[3] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[4] Texas A&I Univ, Dept Elect Engn & Comp Sci, Kingsville, TX 78363 USA
关键词
Silicon nanostructures; Exciton binding energy; Doping; TDDFT; EFFECTIVE CORE POTENTIALS; QUANTUM-DOT STRUCTURES; TANDEM SOLAR-CELLS; POROUS SILICON; MOLECULAR CALCULATIONS; GERMANIUM NANOWIRES; CRYSTALLINE SILICON; SI; LUMINESCENCE; EMISSION;
D O I
10.1016/j.solener.2015.11.030
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The utilization of silicon nanostructures, from quantum dots to nanowires, for photovoltaic applications depends on understanding the effect of their physical structure on their optical absorption properties. In this work, we perform TDDFT calculations to study the length dependent optical absorption in pristine and doped silicon nanostructures. Our main findings are that: (i) The oscillator strength as a function of length is quadratic at small lengths, and then increases linearly. (ii) The exciton binding energy is seen to decrease by approximately 45% from 0.67 eV to about 0.3 eV with length increase, for a nanostructure with a cross-section diameter of approximately 12 A. (iii) Doping and codoping with P, B, and Zr have the potential to cause the optical absorption to change from UV to the visible spectrum. The findings of this investigation demonstrate the potential to tailor silicon nanostructures for photovoltaic and optoelectronic applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 56 条
[1]   Core-shell silicon nanowire solar cells [J].
Adachi, M. M. ;
Anantram, M. P. ;
Karim, K. S. .
SCIENTIFIC REPORTS, 2013, 3
[2]   Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires [J].
Adachi, M. M. ;
Anantram, M. P. ;
Karim, K. S. .
NANO LETTERS, 2010, 10 (10) :4093-4098
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]  
Borgström MT, 2005, NANO LETT, V5, P1439, DOI 10.1021/nl050802y
[5]  
Buin AK, 2008, NANO LETT, V8, P760, DOI [10.1021/nl0727314, 10.1021/nI0727314]
[6]   Silicon quantum dot nanostructures for tandem photovoltaic cells [J].
Conibeer, Gavin ;
Green, Martin ;
Cho, Eun-Chel ;
Koenig, Dirk ;
Cho, Young-Hyun ;
Fangsuwannarak, Thipwan ;
Scardera, Giuseppe ;
Pink, Edwin ;
Huang, Yidan ;
Puzzer, Tom ;
Huang, Shujuan ;
Song, Dengyuan ;
Flynn, Chris ;
Park, Sangwook ;
Hao, Xiaojing ;
Mansfield, Daniel .
THIN SOLID FILMS, 2008, 516 (20) :6748-6756
[7]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[8]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[9]   VISIBLE-LIGHT EMISSION DUE TO QUANTUM SIZE EFFECTS IN HIGHLY POROUS CRYSTALLINE SILICON [J].
CULLIS, AG ;
CANHAM, LT .
NATURE, 1991, 353 (6342) :335-338
[10]  
Dennington R., 2016, GAUSSVIEW