Principal component regression for data containing outliers and missing elements

被引:23
作者
Serneels, Sven [2 ]
Verdonck, Tim [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, Agoras Grp, B-2020 Antwerp, Belgium
[2] LS Serv & Consultancy, Edegem, Belgium
关键词
MULTIVARIATE REGRESSION; ROBUST; ESTIMATOR; PROJECTION; INFERENCE;
D O I
10.1016/j.csda.2009.04.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A methodology is presented to construct an expectation robust algorithm for principal component regression. The presented method is the first multivariate regression method which can resist outliers and which can cope with missing elements in the data simultaneously. Simulations and an example illustrate the good statistical properties of the method. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3855 / 3863
页数:9
相关论文
共 50 条
[31]   Multi-feature clustering of step data using multivariate functional principal component analysis [J].
Song, Wookyeong ;
Oh, Hee-Seok ;
Cheung, Ying Kuen ;
Lim, Yaeji .
STATISTICAL PAPERS, 2024, 65 (04) :2109-2134
[32]   A resampling method by perturbing the estimating functions for quantile regression with missing data [J].
Zhang, Li ;
Lin, Cunjie ;
Zhou, Yong .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) :6661-6671
[33]   Empirical Likelihood for Composite Quantile Regression Models with Missing Response Data [J].
Luo, Shuanghua ;
Zheng, Yu ;
Zhang, Cheng-yi .
SYMMETRY-BASEL, 2024, 16 (10)
[34]   Accounting for informatively missing data in logistic regression by means of reassessment sampling [J].
Lin, Ji ;
Lyles, Robert H. .
STATISTICS IN MEDICINE, 2015, 34 (11) :1925-1939
[35]   Robust nonparametric equivariant regression for functional data with responses missing at random [J].
Fetitah, Omar ;
Attouch, Mohammed Kadi ;
Khardani, Salah ;
Righi, Ali .
METRIKA, 2023, 86 (08) :899-929
[36]   Asymptotic properties of local polynomial regression with missing data and correlated errors [J].
Perez-Gonzalez, A. ;
Vilar-Fernandez, J. M. ;
Gonzalez-Manteiga, W. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) :85-109
[37]   Empirical likelihood for quantile regression models with response data missing at random [J].
Luo, S. ;
Pang, Shuxia .
OPEN MATHEMATICS, 2017, 15 :317-330
[38]   Regression with missing data, a comparison study of techniques based on random forests [J].
Gomez-Mendez, Irving ;
Joly, Emilien .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (12) :1924-1949
[39]   Parameter clustering in Bayesian functional principal component analysis of neuroscientific data [J].
Margaritella, Nicolo ;
Inacio, Vanda ;
King, Ruth .
STATISTICS IN MEDICINE, 2021, 40 (01) :167-184
[40]   Optimal Data Scaling for Principal Component Pursuit: A Lyapunov Approach to Convergence [J].
Cheng, Yue ;
Shi, Dawei ;
Chen, Tongwen ;
Shu, Zhan .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (08) :2057-2071