Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries

被引:246
|
作者
Dou, Fei [1 ]
Shi, Liyi [1 ]
Chen, Guorong [1 ]
Zhang, Dengsong [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Res Ctr Nano Sci & Technol, Dept Chem,Coll Sci, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Si/C composite anodes; Lithium-ion battery; Structural design; Cyclic stability;
D O I
10.1007/s41918-018-00028-w
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon (Si) is a representative anode material for next-generation lithium-ion batteries due to properties such as a high theoretical capacity, suitable working voltage, and high natural abundance. However, due to inherently large volume expansions (similar to 400%) during insertion/deinsertion processes as well as poor electrical conductivity and unstable solid electrolyte interfaces (SEI) films, Si-based anodes possess serious stability problems, greatly hindering practical application. To resolve these issues, the modification of Si anodes with carbon (C) is a promising method which has been demonstrated to enhance electrical conductivity and material plasticity. In this review, recent researches into Si/C anodes are grouped into categories based on the structural dimension of Si materials, including nanoparticles, nanowires and nanotubes, nanosheets, and porous Si-based materials, and the structural and electrochemical performance of various Si/C composites based on carbon materials with varying structures will be discussed. In addition, the progress and limitations of the design of existing Si/C composite anodes are summarized, and future research perspectives in this field are presented.
引用
收藏
页码:149 / 198
页数:50
相关论文
共 50 条
  • [11] Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
    Lai, Jun
    Guo, Huajun
    Wang, Zhixing
    Li, Xinhai
    Zhang, Xiaoping
    Wu, Feixiang
    Yue, Peng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 530 : 30 - 35
  • [12] Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries: A review
    Yang, Liu
    Li, Shuaining
    Zhang, Yuming
    Feng, Hongbo
    Li, Jiangpeng
    Zhang, Xinyu
    Guan, Huai
    Kong, Long
    Chen, Zhaohui
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 30 - 45
  • [13] Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review
    Liu Yang
    Shuaining Li
    Yuming Zhang
    Hongbo Feng
    Jiangpeng Li
    Xinyu Zhang
    Huai Guan
    Long Kong
    Zhaohui Chen
    JournalofEnergyChemistry, 2024, 97 (10) : 30 - 45
  • [14] Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries
    Huixin Chen
    Zhixin Dong
    Yanpeng Fu
    Yong Yang
    Journal of Solid State Electrochemistry, 2010, 14 : 1829 - 1834
  • [15] Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries
    Liu, Xuyan
    Zhu, Xinjie
    Pan, Deng
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):
  • [16] Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries
    Chen, Huixin
    Dong, Zhixin
    Fu, Yanpeng
    Yang, Yong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) : 1829 - 1834
  • [17] High capacity silicon/carbon composite anode materials for lithium ion batteries
    Wen, ZS
    Yang, J
    Wang, BF
    Wang, K
    Liu, Y
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) : 165 - 168
  • [18] High performance silicon carbon composite anode materials for lithium ion batteries
    Luo, Zhaojun
    Fan, Dongdong
    Liu, Xianlong
    Mao, Huanyu
    Yao, Caifang
    Deng, Zhongyi
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 16 - 21
  • [19] CARBON COMPOSITES AS ANODE MATERIALS FOR LITHIUM-ION BATTERIES
    Stenina, I. A.
    Kulova, T. L.
    Skundin, A. M.
    Yaroslavtsev, A. B.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2017, 49 (02) : 140 - 149
  • [20] Research progress on silicon/carbon composite anode materials for lithium-ion battery
    Shen, Xiaohui
    Tian, Zhanyuan
    Fan, Ruijuan
    Shao, Le
    Zhang, Dapeng
    Cao, Guolin
    Kou, Liang
    Bai, Yangzhi
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 1067 - 1090