Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries

被引:277
作者
Dou, Fei [1 ]
Shi, Liyi [1 ]
Chen, Guorong [1 ]
Zhang, Dengsong [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Res Ctr Nano Sci & Technol, Dept Chem,Coll Sci, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Si/C composite anodes; Lithium-ion battery; Structural design; Cyclic stability;
D O I
10.1007/s41918-018-00028-w
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon (Si) is a representative anode material for next-generation lithium-ion batteries due to properties such as a high theoretical capacity, suitable working voltage, and high natural abundance. However, due to inherently large volume expansions (similar to 400%) during insertion/deinsertion processes as well as poor electrical conductivity and unstable solid electrolyte interfaces (SEI) films, Si-based anodes possess serious stability problems, greatly hindering practical application. To resolve these issues, the modification of Si anodes with carbon (C) is a promising method which has been demonstrated to enhance electrical conductivity and material plasticity. In this review, recent researches into Si/C anodes are grouped into categories based on the structural dimension of Si materials, including nanoparticles, nanowires and nanotubes, nanosheets, and porous Si-based materials, and the structural and electrochemical performance of various Si/C composites based on carbon materials with varying structures will be discussed. In addition, the progress and limitations of the design of existing Si/C composite anodes are summarized, and future research perspectives in this field are presented.
引用
收藏
页码:149 / 198
页数:50
相关论文
共 222 条
[1]   Prospects and Limits of Energy Storage in Batteries [J].
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05) :830-844
[2]   Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery [J].
Agyeman, Daniel Adjei ;
Song, Kyeongse ;
Lee, Gi-Hyeok ;
Park, Mihui ;
Kang, Yong-Mook .
ADVANCED ENERGY MATERIALS, 2016, 6 (20)
[3]   Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage [J].
An, Geon-Hyoung ;
Kim, Hyeonjin ;
Ahn, Hyo-Jin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (07) :6235-6244
[4]   Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries [J].
An, Juan ;
Shi, Liyi ;
Chen, Guorong ;
Li, Musen ;
Liu, Hongjiang ;
Yuan, Shuai ;
Chen, Shimou ;
Zhang, Dengsong .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19738-19744
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[7]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[8]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[9]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[10]   In Situ Atomic Force Microscopy of Lithiation and Delithiation of Silicon Nanostructures for Lithium Ion Batteries [J].
Becker, Collin R. ;
Strawhecker, Kenneth E. ;
McAllister, Quinn P. ;
Lundgren, Cynthia A. .
ACS NANO, 2013, 7 (10) :9173-9182