New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions

被引:82
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Budak, Huseyin [3 ]
Agarwal, Praveen [4 ]
Murtaza, Ghulam [5 ]
Chu, Yu-Ming [6 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[4] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[5] Univ Management Technol, Dept Math, Lahore, Pakistan
[6] Dept Math, Huzhou Univ, Huzhou, Peoples R China
关键词
Simpson's <mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac> formula; Simpson's <mml:mfrac><mml:mn>3</mml:mn><mml:mn>8</mml:mn></mml:mfrac> formula; Integral inequalities; Quantum calculus; Preinvex functions; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1186/s13662-021-03226-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we derive two generalized integral identities involving the q kappa 2-quantum integrals and quantum numbers, the results are then used to establish some new quantum boundaries for quantum Simpson's and quantum Newton's inequalities for q-differentiable preinvex functions. Moreover, we obtain some new and known Simpson's and Newton's type inequalities by considering the limit q -> 1- in the key results of this paper.
引用
收藏
页数:21
相关论文
共 33 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]   Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables [J].
Ali, Muhammad Aamir ;
Chu, Yu-Ming ;
Budak, Hueseyin ;
Akkurt, Abdullah ;
Yildirim, Hueseyin ;
Zahid, Manzoor Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[3]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[4]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[5]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[6]   New Quantum Hermite-Hadamard Inequalities Utilizing Harmonic Convexity of the Functions [J].
Bin-Mohsin, Bandar ;
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Riahi, Latifa ;
Noor, Khalida Inayat ;
Almutairi, Bander .
IEEE ACCESS, 2019, 7 :20479-20483
[7]   Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions [J].
Budak, Huseyin ;
Ali, Muhammad Aamir ;
Tarhanaci, Meliha .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) :899-910
[8]   Simpson and Newton type inequalities for convex functions via newly defined quantum integrals [J].
Budak, Huseyin ;
Erden, Samet ;
Ali, Muhammad Aamir .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :378-390
[9]  
Cheung P., 2001, QUANTUM CALCULUS
[10]   Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions [J].
Deng, Yongping ;
Awan, Muhammad Uzair ;
Wu, Shanhe .
MATHEMATICS, 2019, 7 (08)