New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions

被引:79
作者
Ali, Muhammad Aamir [1 ]
Abbas, Mujahid [2 ]
Budak, Huseyin [3 ]
Agarwal, Praveen [4 ]
Murtaza, Ghulam [5 ]
Chu, Yu-Ming [6 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[2] Govt Coll Univ, Dept Math, Lahore, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[4] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[5] Univ Management Technol, Dept Math, Lahore, Pakistan
[6] Dept Math, Huzhou Univ, Huzhou, Peoples R China
关键词
Simpson's <mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac> formula; Simpson's <mml:mfrac><mml:mn>3</mml:mn><mml:mn>8</mml:mn></mml:mfrac> formula; Integral inequalities; Quantum calculus; Preinvex functions; HERMITE-HADAMARD INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1186/s13662-021-03226-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we derive two generalized integral identities involving the q kappa 2-quantum integrals and quantum numbers, the results are then used to establish some new quantum boundaries for quantum Simpson's and quantum Newton's inequalities for q-differentiable preinvex functions. Moreover, we obtain some new and known Simpson's and Newton's type inequalities by considering the limit q -> 1- in the key results of this paper.
引用
收藏
页数:21
相关论文
共 33 条
  • [1] AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
  • [2] Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
    Ali, Muhammad Aamir
    Chu, Yu-Ming
    Budak, Hueseyin
    Akkurt, Abdullah
    Yildirim, Hueseyin
    Zahid, Manzoor Ahmed
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [4] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [5] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [6] New Quantum Hermite-Hadamard Inequalities Utilizing Harmonic Convexity of the Functions
    Bin-Mohsin, Bandar
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Riahi, Latifa
    Noor, Khalida Inayat
    Almutairi, Bander
    [J]. IEEE ACCESS, 2019, 7 : 20479 - 20483
  • [7] Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions
    Budak, Huseyin
    Ali, Muhammad Aamir
    Tarhanaci, Meliha
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 899 - 910
  • [8] Simpson and Newton type inequalities for convex functions via newly defined quantum integrals
    Budak, Huseyin
    Erden, Samet
    Ali, Muhammad Aamir
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 378 - 390
  • [9] Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions
    Deng, Yongping
    Awan, Muhammad Uzair
    Wu, Shanhe
    [J]. MATHEMATICS, 2019, 7 (08)
  • [10] Dragomir S.S, 2009, Res. Rep. Collect., V12