Logarithmic temperature dependence of resistivity in CVD graphene

被引:4
作者
Takehana, Kanji [1 ]
Imanaka, Yasutaka [1 ]
Watanabe, Eiichiro [1 ]
Oosato, Hirotaka [1 ]
Tsuya, Daiju [1 ]
Kim, Yongmin [2 ,3 ]
An, Ki-Seok [4 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[2] Dankook Univ, Dept Appl Phys, Yongin, South Korea
[3] Dankook Univ, Inst Nanosci & Biotechnol, Yongin, South Korea
[4] Korea Res Inst Chem Technol, Device Mat Res Ctr, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
CVD graphene; Magnetotransport property; Log T dependence of resistivity; CHEMICAL-VAPOR-DEPOSITION; DILUTE MAGNETIC-ALLOYS; TRANSPORT-COEFFICIENTS; RESISTANCE CORRECTION; GRAPHITE; DEFECTS; ORIGIN; SYSTEM; FIELD; MODEL;
D O I
10.1016/j.cap.2017.01.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Logarithmical increase of the longitudinal resistivity (p(xx)) between 10 K and 80 K and its saturation at low temperature were observed in the graphene synthesized by the chemical vapor deposition (CVD) with various applied gate voltage. In the two-dimensional system, it is considerably difficult to identify the origin of the logarithmic temperature (Log-T) increase of the resistivity, because there are three corrections to exhibit the Log-T behavior: the weak localization, the electron-electron interaction (EEI) in the disordered system and the Kondo effect. In order to distinguish the origin of the Log-T behavior, we contrived a new method utilizing the magnetotransport property in tilted magnetic fields. As a result, we have assigned the Log-T behavior in the CVD graphene to the correction of the EEI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:474 / 478
页数:5
相关论文
共 35 条
[1]   Dangling bonds and magnetism of grain boundaries in graphene [J].
Akhukov, M. A. ;
Fasolino, A. ;
Gornostyrev, Y. N. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2012, 85 (11)
[2]  
Altshuler B. L., 1985, Electron-electron interactions in disordered systems, P1
[3]   INTERACTION EFFECTS IN DISORDERED FERMI SYSTEMS IN 2 DIMENSIONS [J].
ALTSHULER, BL ;
ARONOV, AG ;
LEE, PA .
PHYSICAL REVIEW LETTERS, 1980, 44 (19) :1288-1291
[4]  
Artshuler B.L., 1984, SOV PHYS JETP, V59, P415
[5]   Magnetic field effects in the s-d exchange model of dilute magnetic alloys [J].
Bloomfield, Philip E. ;
Hecht, Robert ;
Sievert, Paul R. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (09) :3714-3731
[6]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[7]   Origin of logarithmic resistance correction in graphene Reply [J].
Chen, Jian-Hao ;
Li, Liang ;
Cullen, William G. ;
Williams, Ellen D. ;
Fuhrer, Michael S. .
NATURE PHYSICS, 2012, 8 (05) :353-353
[8]  
Chen JH, 2011, NAT PHYS, V7, P535, DOI [10.1038/nphys1962, 10.1038/NPHYS1962]
[9]   Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene [J].
Clark, Kendal W. ;
Zhang, X. -G. ;
Vlassiouk, Ivan V. ;
He, Guowei ;
Feenstra, Randall M. ;
Li, An-Ping .
ACS NANO, 2013, 7 (09) :7956-7966
[10]   TRANSPORT-COEFFICIENTS OF THE ANDERSON MODEL VIA THE NUMERICAL RENORMALIZATION-GROUP [J].
COSTI, TA ;
HEWSON, AC ;
ZLATIC, V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (13) :2519-2558