Lie symmetry and Mei symmetry of a rotational relativistic system in phase space

被引:0
作者
Li, H [1 ]
Fang, JH [1 ]
机构
[1] Univ Petr, Coll Phys Sci & Technol, Dongying 257061, Peoples R China
来源
CHINESE PHYSICS | 2004年 / 13卷 / 08期
关键词
rotational relativistic system; Lie symmetry; Mei symmetry; conserved quantity; phase space;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie symmetry and the Mei symmetry of a rotational relativistic system in phase space are studied. The definition, criterion and conserved quantity of the Lie symmetry and the Mei symmetry of a rotational relativistic system in phase space are given. The relation between the Lie symmetry and the Mei symmetry is found. An example is given to illustrate the application of the result.
引用
收藏
页码:1187 / 1190
页数:4
相关论文
共 20 条
  • [11] Mei F. X., 1999, Application of Lie Group and Lie Algebraic in Constrained Mechanical System
  • [12] Lie symmetry and the conserved quantity of a generalized Hamiltonian system
    Mei, FX
    [J]. ACTA PHYSICA SINICA, 2003, 52 (05) : 1048 - 1050
  • [13] Form invariance of Appell equations
    Mei, FX
    [J]. CHINESE PHYSICS, 2001, 10 (03): : 177 - 180
  • [14] Noether E., 1918, NACHRICHTEN GESELLSC, V1918, P235
  • [15] On the form invariance of Nielsen equations
    Wang, SY
    Mei, FX
    [J]. CHINESE PHYSICS, 2001, 10 (05): : 373 - 375
  • [16] Form invariance and Lie symmetry of equations of non-holonomic systems
    Wang, SY
    Mei, FX
    [J]. CHINESE PHYSICS, 2002, 11 (01): : 5 - 8
  • [17] Lie symmetries and conserved quantities of non-holonomic mechanical systems with unilateral Vacco constraints
    Zhang, HB
    [J]. CHINESE PHYSICS, 2002, 11 (01): : 1 - 4
  • [18] Zhang Y, 2000, APPL MATH MECH-ENGL, V21, P59
  • [19] Zhao Y.Y., 1994, ACTA MECH SINICA-PRC, V26, P380
  • [20] ZHAO YY, 1999, SYMMETRIES CONSERVED