Machine Learning to Diagnose Neurodegenerative Multiple Sclerosis Disease

被引:3
作者
Lam, Jin Si [1 ]
Hasan, Md Rakibul [2 ]
Ahmed, Khandaker Asif [3 ]
Hossain, Md Zakir [1 ,3 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] BRAC Univ, Dhaka, Bangladesh
[3] Commonwealth Sci & Ind Res Org, Canberra, ACT, Australia
来源
RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022 | 2022年 / 1716卷
关键词
Multiple sclerosis; Diagnosis; Machine learning; Support vector machine; Floodlight;
D O I
10.1007/978-981-19-8234-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple sclerosis (MS) is a progressive neurodegenerative disease with a wide range of symptoms, making it difficult to diagnose and monitor. Current diagnosis methods are invasive and time-consuming. The use of smartphone monitoring is convenient, non-invasive, and can provide a reliable data source. Our study utilises an open-source dataset, namely-"Floodlight"-that uses smartphones to monitor the daily activities of MS patients. We evaluate whether the Floodlight data can be used in training a machine learning (ML) algorithm for MS diagnosis. After necessary data cleaning, we statistically measured the significance of different tests. Preliminary results show that individual test metrics are helpful for training ML algorithms. Accordingly, we use the selected tests in support vector machine (SVM) and rough set (RS) algorithms. Experimenting with several variations of the ML models, we achieve as high as 69% MS diagnosis accuracy. Since we experiment with SVMs and RSs on individual test metrics, we further report the relative significance of those tests and corresponding ML models suitable for the Floodlight dataset. Our model will serve as a baseline for developing ML-based prognostication tools for MS disease.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 50 条
[21]   A machine learning approach to determine the risk factors for fall in multiple sclerosis [J].
Ozgur, Su ;
Toran, Meryem Kocaslan ;
Toygar, Ismail ;
Yalcin, Gizem Yagmur ;
Eraksoy, Mefkure .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
[22]   A machine learning approach for multiple sclerosis diagnosis through Detecron Architecture [J].
Chaima Dachraoui ;
Aymen Mouelhi ;
Amine Mosbeh ;
Wassim Sliti ;
Cyrine Drissi ;
Basel Solaiman ;
Salam Labidi .
Multimedia Tools and Applications, 2024, 83 :42837-42859
[23]   A machine learning approach for multiple sclerosis diagnosis through Detecron Architecture [J].
Dachraoui, Chaima ;
Mouelhi, Aymen ;
Mosbeh, Amine ;
Sliti, Wassim ;
Drissi, Cyrine ;
Solaiman, Basel ;
Labidi, Salam .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) :42837-42859
[24]   An Interpretable Machine Learning Model to Predict Cortical Atrophy in Multiple Sclerosis [J].
Conti, Allegra ;
Treaba, Constantina Andrada ;
Mehndiratta, Ambica ;
Barletta, Valeria Teresa ;
Mainero, Caterina ;
Toschi, Nicola .
BRAIN SCIENCES, 2023, 13 (02)
[25]   Multiple disease prediction using Machine learning algorithms [J].
Arumugam K. ;
Naved M. ;
Shinde P.P. ;
Leiva-Chauca O. ;
Huaman-Osorio A. ;
Gonzales-Yanac T. .
Materials Today: Proceedings, 2023, 80 :3682-3685
[26]   Biomarkers and Surrogate Outcomes in Neurodegenerative Disease: Lessons from Multiple Sclerosis [J].
Miller D.H. .
NeuroRX, 2004, 1 (2) :284-294
[27]   Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis [J].
Montolio, Alberto ;
Cegonino, Jose ;
Garcia-Martin, Elena ;
Perez Del Palomar, Amaya .
ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (05) :507-528
[28]   Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis [J].
Yperman, Jan ;
Becker, Thijs ;
Valkenborg, Dirk ;
Popescu, Veronica ;
Hellings, Niels ;
Van Wijmeersch, Bart ;
Peeters, Liesbet M. .
BMC NEUROLOGY, 2020, 20 (01)
[29]   Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis [J].
Noteboom, Samantha ;
Seiler, Moritz ;
Chien, Claudia ;
Rane, Roshan P. ;
Barkhof, Frederik ;
Strijbis, Eva M. M. ;
Paul, Friedemann ;
Schoonheim, Menno M. ;
Ritter, Kerstin .
JOURNAL OF NEUROLOGY, 2024, 271 (08) :5577-5589
[30]   Optimal Integration of Machine Learning for Distinct Classification and Activity State Determination in Multiple Sclerosis and Neuromyelitis Optica [J].
Gharaibeh, Maha ;
Abedalaziz, Wlla ;
Alawad, Noor Aldeen ;
Gharaibeh, Hasan ;
Nasayreh, Ahmad ;
El-Heis, Mwaffaq ;
Altalhi, Maryam ;
Forestiero, Agostino ;
Abualigah, Laith .
TECHNOLOGIES, 2023, 11 (05)