Machine Learning to Diagnose Neurodegenerative Multiple Sclerosis Disease

被引:3
|
作者
Lam, Jin Si [1 ]
Hasan, Md Rakibul [2 ]
Ahmed, Khandaker Asif [3 ]
Hossain, Md Zakir [1 ,3 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] BRAC Univ, Dhaka, Bangladesh
[3] Commonwealth Sci & Ind Res Org, Canberra, ACT, Australia
来源
RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022 | 2022年 / 1716卷
关键词
Multiple sclerosis; Diagnosis; Machine learning; Support vector machine; Floodlight;
D O I
10.1007/978-981-19-8234-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple sclerosis (MS) is a progressive neurodegenerative disease with a wide range of symptoms, making it difficult to diagnose and monitor. Current diagnosis methods are invasive and time-consuming. The use of smartphone monitoring is convenient, non-invasive, and can provide a reliable data source. Our study utilises an open-source dataset, namely-"Floodlight"-that uses smartphones to monitor the daily activities of MS patients. We evaluate whether the Floodlight data can be used in training a machine learning (ML) algorithm for MS diagnosis. After necessary data cleaning, we statistically measured the significance of different tests. Preliminary results show that individual test metrics are helpful for training ML algorithms. Accordingly, we use the selected tests in support vector machine (SVM) and rough set (RS) algorithms. Experimenting with several variations of the ML models, we achieve as high as 69% MS diagnosis accuracy. Since we experiment with SVMs and RSs on individual test metrics, we further report the relative significance of those tests and corresponding ML models suitable for the Floodlight dataset. Our model will serve as a baseline for developing ML-based prognostication tools for MS disease.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 50 条
  • [1] Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics
    Cha, Yoonjeong
    Kagalwala, Mohamedi N.
    Ross, Jermaine
    PHARMACEUTICALS, 2024, 17 (02)
  • [2] Multiple sclerosis is primarily a neurodegenerative disease
    Chaudhuri, Abhijit
    JOURNAL OF NEURAL TRANSMISSION, 2013, 120 (10) : 1463 - 1466
  • [3] Multiple sclerosis is primarily a neurodegenerative disease
    Abhijit Chaudhuri
    Journal of Neural Transmission, 2013, 120 : 1463 - 1466
  • [4] Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities
    Aslam, Nida
    Khan, Irfan Ullah
    Bashamakh, Asma
    Alghool, Fatima A.
    Aboulnour, Menna
    Alsuwayan, Noorah M.
    Alturaif, Rawa'a K.
    Brahimi, Samiha
    Aljameel, Sumayh S.
    Al Ghamdi, Kholoud
    SENSORS, 2022, 22 (20)
  • [5] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149
  • [6] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Magi Andorra
    Ana Freire
    Irati Zubizarreta
    Nicole Kerlero de Rosbo
    Steffan D. Bos
    Melanie Rinas
    Einar A. Høgestøl
    Sigrid A. de Rodez Benavent
    Tone Berge
    Synne Brune-Ingebretse
    Federico Ivaldi
    Maria Cellerino
    Matteo Pardini
    Gemma Vila
    Irene Pulido-Valdeolivas
    Elena H. Martinez-Lapiscina
    Sara Llufriu
    Albert Saiz
    Yolanda Blanco
    Eloy Martinez-Heras
    Elisabeth Solana
    Priscilla Bäcker-Koduah
    Janina Behrens
    Joseph Kuchling
    Susanna Asseyer
    Michael Scheel
    Claudia Chien
    Hanna Zimmermann
    Seyedamirhosein Motamedi
    Josef Kauer-Bonin
    Alex Brandt
    Julio Saez-Rodriguez
    Leonidas G. Alexopoulos
    Friedemann Paul
    Hanne F. Harbo
    Hengameh Shams
    Jorge Oksenberg
    Antonio Uccelli
    Ricardo Baeza-Yates
    Pablo Villoslada
    Journal of Neurology, 2024, 271 : 1133 - 1149
  • [7] Machine Learning: An Aid in Detection of Neurodegenerative Disease Parkinson
    Sisodia, Jignesh
    Kalbande, Dhananjay
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 733 - 741
  • [8] A systematic review of the application of machine-learning algorithms in multiple sclerosis
    Vazquez-Marrufo, M.
    Sarrias-Arrabal, E.
    Garcia-Torres, M.
    Martin-Clemente, R.
    Izquierdo, G.
    NEUROLOGIA, 2023, 38 (08): : 577 - 590
  • [9] Disease Delineation for Multiple Sclerosis, Friedreich Ataxia, and Healthy Controls Using Supervised Machine Learning on Speech Acoustics
    Schultz, Benjamin G.
    Joukhadar, Zaher
    Nattala, Usha
    Quiroga, Maria del Mar
    Noffs, Gustavo
    Rojas, Sandra
    Reece, Hannah
    van der Walt, Anneke
    Vogel, Adam P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 4278 - 4285
  • [10] MACHINE-LEARNING TECHNIQUES IN MULTIPLE SCLEROSIS PREDICTION USING EEG
    Soleimanidoust, Leila
    Rezai, Abdalhossein
    Barghamadi, Hamideh
    Ahanian, Iman
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,