POLLEN73S: An image dataset for pollen grains classification

被引:32
作者
Astolfi, Gilberto [1 ,2 ]
Goncalves, Ariadne Barbosa [3 ,4 ]
Menezes, Geazy Vilharva [1 ]
Brito Borges, Felipe Silveira [6 ]
Melo Nunes Astolfi, Angelica Christina [5 ]
Matsubara, Edson Takashi [1 ]
Alvarez, Marco [7 ]
Pistori, Hemerson [1 ,6 ]
机构
[1] Univ Fed Mato Grosso do Sul, Coll Comp, Campo Grande, MS, Brazil
[2] Sci & Technol Mato Grosso do Sul, Fed Inst Educ, Campo Grande, MS, Brazil
[3] Univ Fed Mato Grosso do Sul, Postgrad Dept Nat Resources, Campo Grande, MS, Brazil
[4] Univ Estadual Mato Grosso do Sul, Dept Environm Engn, Maracaju, MS, Brazil
[5] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, Campo Grande, MS, Brazil
[6] Univ Catolica Dom Bosco, Campo Grande, MS, Brazil
[7] Univ Rhode Isl, Dept Comp Sci & Stat, Kingston, RI 02881 USA
关键词
Pollen classification; Convolutional neural networks; Image dataset;
D O I
10.1016/j.ecoinf.2020.101165
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology, and melissopalynology. This paper presents a new public annotated image dataset for the Brazilian Savanna called POLLEN73S composed of 2523 images from 73 pollen types. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide a baseline for pollen grain classification. Our experiments showed evidence that DenseNet-201 and ResNet-50 have superior performance against the other CNNs tested, achieving precision results of 95.7% and 94.0%, respectively. Due to its category coverage and satisfactory diversity of examples, POLLEN73S offers a diversity of pollen grain to guide progress in computer vision to solve Palynology problems.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2015, ICLR
[2]   Benchmark Analysis of Representative Deep Neural Network Architectures [J].
Bianco, Simone ;
Cadene, Remi ;
Celona, Luigi ;
Napoletano, Paolo .
IEEE ACCESS, 2018, 6 :64270-64277
[3]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[4]  
Chollet F., 2015, KERAS
[5]  
Chung J., 2014, CORR, DOI DOI 10.48550/ARXIV.1412.3555
[6]   TRANSFORMATION TO NORMALITY OF NULL DISTRIBUTION OF G1 [J].
DAGOSTIN.RB .
BIOMETRIKA, 1970, 57 (03) :679-&
[7]  
Daood Amar, 2016, Advances in Visual Computing. 12th International Symposium, ISVC 2016. Proceedings: LNCS 10072, P321, DOI 10.1007/978-3-319-50835-1_30
[8]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[9]   MULTIPLE COMPARISONS USING RANK SUMS [J].
DUNN, OJ .
TECHNOMETRICS, 1964, 6 (03) :241-&
[10]   Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains [J].
Goncalves, Ariadne Barbosa ;
Souza, Junior Silva ;
da Silva, Gercina Goncalves ;
Cereda, Marney Pascoli ;
Pott, Arnildo ;
Naka, Marco Hiroshi ;
Pistori, Hemerson .
PLOS ONE, 2016, 11 (06)