POLLEN73S: An image dataset for pollen grains classification

被引:32
作者
Astolfi, Gilberto [1 ,2 ]
Goncalves, Ariadne Barbosa [3 ,4 ]
Menezes, Geazy Vilharva [1 ]
Brito Borges, Felipe Silveira [6 ]
Melo Nunes Astolfi, Angelica Christina [5 ]
Matsubara, Edson Takashi [1 ]
Alvarez, Marco [7 ]
Pistori, Hemerson [1 ,6 ]
机构
[1] Univ Fed Mato Grosso do Sul, Coll Comp, Campo Grande, MS, Brazil
[2] Sci & Technol Mato Grosso do Sul, Fed Inst Educ, Campo Grande, MS, Brazil
[3] Univ Fed Mato Grosso do Sul, Postgrad Dept Nat Resources, Campo Grande, MS, Brazil
[4] Univ Estadual Mato Grosso do Sul, Dept Environm Engn, Maracaju, MS, Brazil
[5] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, Campo Grande, MS, Brazil
[6] Univ Catolica Dom Bosco, Campo Grande, MS, Brazil
[7] Univ Rhode Isl, Dept Comp Sci & Stat, Kingston, RI 02881 USA
关键词
Pollen classification; Convolutional neural networks; Image dataset;
D O I
10.1016/j.ecoinf.2020.101165
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology, and melissopalynology. This paper presents a new public annotated image dataset for the Brazilian Savanna called POLLEN73S composed of 2523 images from 73 pollen types. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide a baseline for pollen grain classification. Our experiments showed evidence that DenseNet-201 and ResNet-50 have superior performance against the other CNNs tested, achieving precision results of 95.7% and 94.0%, respectively. Due to its category coverage and satisfactory diversity of examples, POLLEN73S offers a diversity of pollen grain to guide progress in computer vision to solve Palynology problems.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Benchmark Analysis of Representative Deep Neural Network Architectures
    Bianco, Simone
    Cadene, Remi
    Celona, Luigi
    Napoletano, Paolo
    [J]. IEEE ACCESS, 2018, 6 : 64270 - 64277
  • [2] Chollet Francois, 2017, PROC CVPR IEEE, P1251, DOI [10.1109/CVPR.2017.195, DOI 10.1109/CVPR.2017.195]
  • [3] Chollet Francois, 2015, Keras
  • [4] Chung Junyoung, 2014, CoRR, P1
  • [5] DAGOSTIN.RB, 1970, BIOMETRIKA, V57, P679, DOI 10.1093/biomet/57.3.679
  • [6] Daood Amar, 2016, Advances in Visual Computing. 12th International Symposium, ISVC 2016. Proceedings: LNCS 10072, P321, DOI 10.1007/978-3-319-50835-1_30
  • [7] Duchi J, 2011, J MACH LEARN RES, V12, P2121
  • [8] MULTIPLE COMPARISONS USING RANK SUMS
    DUNN, OJ
    [J]. TECHNOMETRICS, 1964, 6 (03) : 241 - &
  • [9] Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains
    Goncalves, Ariadne Barbosa
    Souza, Junior Silva
    da Silva, Gercina Goncalves
    Cereda, Marney Pascoli
    Pott, Arnildo
    Naka, Marco Hiroshi
    Pistori, Hemerson
    [J]. PLOS ONE, 2016, 11 (06):
  • [10] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1