Machine learning classification of SDSS transient survey images

被引:37
作者
du Buisson, L. [1 ,2 ]
Sivanandam, N. [2 ]
Bassett, Bruce A. [1 ,2 ,3 ]
Smith, M. [4 ,5 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa
[2] African Inst Math Sci, ZA-7945 Muizenberg, South Africa
[3] S African Astron Observ, ZA-7925 Observatory, South Africa
[4] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa
[5] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
美国国家科学基金会; 新加坡国家研究基金会; 美国国家航空航天局;
关键词
methods: data analysis; methods: observational; methods: statistical; techniques: image processing; techniques: photometric; surveys; II SUPERNOVA SURVEY; COSMOLOGY; DISCOVERY; AGREEMENT;
D O I
10.1093/mnras/stv2041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the Sloan Digital Sky Survey (SDSS) supernova survey into real objects and artefacts. This is a first step in any transient science pipeline and is currently still done by humans, but future surveys such as the Large Synoptic Survey Telescope (LSST) will necessitate fully machine-enabled solutions. Using features trained from eigenimage analysis (principal component analysis, PCA) of single-epoch g, r and i difference images, we can reach a completeness (recall) of 96 per cent, while only incorrectly classifying at most 18 per cent of artefacts as real objects, corresponding to a precision (purity) of 84 per cent. In general, random forests performed best, followed by the k-nearest neighbour and the SkyNet artificial neural net algorithms, compared to other methods such as naive Bayes and kernel support vector machine. Our results show that PCA-based machine learning can match human success levels and can naturally be extended by including multiple epochs of data, transient colours and host galaxy information which should allow for significant further improvements, especially at low signal-to-noise.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 37 条
  • [21] PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II
    Hlozek, Renee
    Kunz, Martin
    Bassett, Bruce
    Smith, Mat
    Newling, James
    Varughese, Melvin
    Kessler, Rick
    Bernstein, Joseph P.
    Campbell, Heather
    Dilday, Ben
    Falck, Bridget
    Frieman, Joshua
    Kuhlmann, Steve
    Lampeitl, Hubert
    Marriner, John
    Nichol, Robert C.
    Riess, Adam G.
    Sako, Masao
    Schneider, Donald P.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 752 (02)
  • [22] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [23] Results from the Supernova Photometric Classification Challenge
    Kessler, Richard
    Bassett, Bruce
    Belov, Pavel
    Bhatnagar, Vasudha
    Campbell, Heather
    Conley, Alex
    Frieman, Joshua A.
    Glazov, Alexandre
    Gonzalez-Gaitan, Santiago
    Hlozek, Renee
    Jha, Saurabh
    Kuhlmann, Stephen
    Kunz, Martin
    Lampeitl, Hubert
    Mahabal, Ashish
    Newling, James
    Nichol, Robert C.
    Parkinson, David
    Philip, Ninan Sajeeth
    Poznanski, Dovi
    Richards, Joseph W.
    Rodney, Steven A.
    Sako, Masao
    Schneider, Donald P.
    Smith, Mathew
    Stritzinger, Maximilian
    Varughese, Melvin
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2010, 122 (898) : 1415 - 1431
  • [24] TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests
    Kind, Matias Carrasco
    Brunner, Robert J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 432 (02) : 1483 - 1501
  • [25] Extending BEAMS to incorporate correlated systematic uncertainties
    Knights, Michelle
    Bassett, Bruce A.
    Varughese, Melvin
    Hlozek, Renee
    Kunz, Martin
    Smith, Mat
    Newling, James
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (01):
  • [26] Bayesian estimation applied to multiple species
    Kunz, Martin
    Bassett, Bruce A.
    Hlozek, Renee A.
    [J]. PHYSICAL REVIEW D, 2007, 75 (10):
  • [27] MEASUREMENT OF OBSERVER AGREEMENT FOR CATEGORICAL DATA
    LANDIS, JR
    KOCH, GG
    [J]. BIOMETRICS, 1977, 33 (01) : 159 - 174
  • [28] LSST Science Collaboration, 2009, ARXIV E PRINTS
  • [29] MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417
  • [30] Murtagh F., 1991, NEUROCOMPUTING, V2, P183, DOI [DOI 10.1016/0925-2312(91)90023-5, 10.1016/0925-2312(91)90023-5]