Machine learning classification of SDSS transient survey images

被引:37
作者
du Buisson, L. [1 ,2 ]
Sivanandam, N. [2 ]
Bassett, Bruce A. [1 ,2 ,3 ]
Smith, M. [4 ,5 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa
[2] African Inst Math Sci, ZA-7945 Muizenberg, South Africa
[3] S African Astron Observ, ZA-7925 Observatory, South Africa
[4] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa
[5] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
美国国家科学基金会; 新加坡国家研究基金会; 美国国家航空航天局;
关键词
methods: data analysis; methods: observational; methods: statistical; techniques: image processing; techniques: photometric; surveys; II SUPERNOVA SURVEY; COSMOLOGY; DISCOVERY; AGREEMENT;
D O I
10.1093/mnras/stv2041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the Sloan Digital Sky Survey (SDSS) supernova survey into real objects and artefacts. This is a first step in any transient science pipeline and is currently still done by humans, but future surveys such as the Large Synoptic Survey Telescope (LSST) will necessitate fully machine-enabled solutions. Using features trained from eigenimage analysis (principal component analysis, PCA) of single-epoch g, r and i difference images, we can reach a completeness (recall) of 96 per cent, while only incorrectly classifying at most 18 per cent of artefacts as real objects, corresponding to a precision (purity) of 84 per cent. In general, random forests performed best, followed by the k-nearest neighbour and the SkyNet artificial neural net algorithms, compared to other methods such as naive Bayes and kernel support vector machine. Our results show that PCA-based machine learning can match human success levels and can naturally be extended by including multiple epochs of data, transient colours and host galaxy information which should allow for significant further improvements, especially at low signal-to-noise.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 37 条
  • [1] Altman DG, 1991, PRACTICAL STAT MED R
  • [2] [Anonymous], 2006, Pattern recognition and machine learning
  • [3] How to find more supernovae with less work: Object classification techniques for difference imaging
    Bailey, S.
    Aragon, C.
    Romano, R.
    Thomas, R. C.
    Weaver, B. A.
    Wong, D.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 665 (02) : 1246 - 1253
  • [4] Bassett B. A., 2005, SDSS 2 SN SUPERUNOFF
  • [5] SExtractor: Software for source extraction
    Bertin, E
    Arnouts, S
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02): : 393 - 404
  • [6] Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era
    Bloom, J. S.
    Richards, J. W.
    Nugent, P. E.
    Quimby, R. M.
    Kasliwal, M. M.
    Starr, D. L.
    Poznanski, D.
    Ofek, E. O.
    Cenko, S. B.
    Butler, N. R.
    Kulkarni, S. R.
    Gal-Yam, A.
    Law, N.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (921) : 1175 - 1196
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [9] Using machine learning for discovery in synoptic survey imaging data
    Brink, Henrik
    Richards, Joseph W.
    Poznanski, Dovi
    Bloom, Joshua S.
    Rice, John
    Negahban, Sahand
    Wainwright, Martin
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (02) : 1047 - 1060
  • [10] COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY
    Campbell, Heather
    D'Andrea, Chris B.
    Nichol, Robert C.
    Sako, Masao
    Smith, Mathew
    Lampeitl, Hubert
    Olmstead, Matthew D.
    Bassett, Bruce
    Biswas, Rahul
    Brown, Peter
    Cinabro, David
    Dawson, Kyle S.
    Dilday, Ben
    Foley, Ryan J.
    Frieman, Joshua A.
    Garnavich, Peter
    Hlozek, Renee
    Jha, Saurabh W.
    Kuhlmann, Steve
    Kunz, Martin
    Marriner, John
    Miquel, Ramon
    Richmond, Michael
    Riess, Adam
    Schneider, Donald P.
    Sollerman, Jesper
    Taylor, Matt
    Zhao, Gong-Bo
    [J]. ASTROPHYSICAL JOURNAL, 2013, 763 (02)