Inkjet printing of viable mammalian cells

被引:697
作者
Xu, T [1 ]
Jin, J [1 ]
Gregory, C [1 ]
Hickman, JJ [1 ]
Boland, T [1 ]
机构
[1] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA
关键词
Inkjet technology; tissue engineering; viable mammalian cells;
D O I
10.1016/j.biomaterials.2004.04.011
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The purpose of this study was to explore the use of a commercial thermal printer to deposit Chinese Hamster Ovary (CHO) and embryonic motoneuron cells into pre-defined patterns. These experiments were undertaken to verify the biocompatibility of thermal inkjet printing of mammalian cells and the ability to assemble them into viable constructs. Using a modified Hewlett Packard (HP) 550C computer printer and an HP 51626a ink cartridge, CHO cells and rat embryonic motoneurons were suspended separately in a concentrated phosphate buffered saline solution (3 x). The cells were subsequently printed as a kind of "ink" onto several "biopapers" made from soy agar and collagen gel. The appearance of the CHO cells and motoneurons on the bio-papers indicated an healthy cell morphology. Furthermore, the analyses of the CHO cell viability showed that less than 8% of the cells were lysed during printing. These data indicate that mammalian cells can be effectively delivered by a modified thermal inkjet printer onto biological substrates and that they retain their ability to function. The computer-aided inkjet printing of viable mammalian cells holds potential for creating living tissue analogs, and may eventually lead to the construction of engineered human organs. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 33 条
  • [31] Tissue-engineered spinal cord
    Vacanti, MP
    Leonard, JL
    Dore, B
    Bonassar, LJ
    Cao, Y
    Stachelek, SJ
    Vacanti, JP
    O'Connell, F
    Yu, CS
    Farwell, AP
    Vacanti, CA
    [J]. TRANSPLANTATION PROCEEDINGS, 2001, 33 (1-2) : 592 - 598
  • [32] Cell and organ printing 1: Protein and cell printers
    Wilson, WC
    Boland, T
    [J]. ANATOMICAL RECORD PART A-DISCOVERIES IN MOLECULAR CELLULAR AND EVOLUTIONARY BIOLOGY, 2003, 272A (02): : 491 - 496
  • [33] Construction of high-density bacterial colony arrays and patterns by the ink-jet method
    Xu, T
    Petridou, S
    Lee, EH
    Roth, EA
    Vyavahare, NR
    Hickman, JJ
    Boland, T
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2004, 85 (01) : 29 - 33