A Machine Learning Approach for Mapping Forest Vegetation in Riparian Zones in an Atlantic Biome Environment Using Sentinel-2 Imagery

被引:17
|
作者
Furuya, Danielle Elis Garcia [1 ]
Aguiar, Joao Alex Floriano [2 ]
Estrabis, Nayara V. [3 ]
Pinheiro, Mayara Maezano Faita [1 ]
Furuya, Michelle Tais Garcia [1 ]
Pereira, Danillo Roberto [1 ]
Goncalves, Wesley Nunes [3 ,4 ]
Liesenberg, Veraldo [5 ]
Li, Jonathan [6 ,7 ]
Marcato Junior, Jose [3 ]
Prado Osco, Lucas [2 ]
Ramos, Ana Paula Marques [1 ]
机构
[1] Univ Western Sao Paulo, Postgrad Program Environm & Reg Dev, Rodovia Raposo Tavares,Km 572, BR-19067175 Bairro Limoeiro, SP, Brazil
[2] Univ Western Sao Paulo, Fac Engn & Architecture & Urbanism, Rodovia Raposo Tavares,Km 572, BR-19067175 Bairro Limoeiro, SP, Brazil
[3] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, Av Costa & Silva Pioneiros, BR-79070900 Campo Grande, MS, Brazil
[4] Univ Fed Mato Grosso do Sul, Fac Comp, Av Costa & Silva Pioneiros, BR-79070900 Campo Grande, MS, Brazil
[5] Santa Catarina State Univ, Forest Engn Dept, Ave Luiz de Camoes 2090, BR-88520000 Lages, SC, Brazil
[6] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[7] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
关键词
machine learning; decision tree; sentinel images; image classification; forest vegetation mapping; TIME-SERIES; CLASSIFICATION;
D O I
10.3390/rs12244086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Riparian zones consist of important environmental regions, specifically to maintain the quality of water resources. Accurately mapping forest vegetation in riparian zones is an important issue, since it may provide information about numerous surface processes that occur in these areas. Recently, machine learning algorithms have gained attention as an innovative approach to extract information from remote sensing imagery, including to support the mapping task of vegetation areas. Nonetheless, studies related to machine learning application for forest vegetation mapping in the riparian zones exclusively is still limited. Therefore, this paper presents a framework for forest vegetation mapping in riparian zones based on machine learning models using orbital multispectral images. A total of 14 Sentinel-2 images registered throughout the year, covering a large riparian zone of a portion of a wide river in the Pontal do Paranapanema region, Sao Paulo state, Brazil, was adopted as the dataset. This area is mainly composed of the Atlantic Biome vegetation, and it is near to the last primary fragment of its biome, being an important region from the environmental planning point of view. We compared the performance of multiple machine learning algorithms like decision tree (DT), random forest (RF), support vector machine (SVM), and normal Bayes (NB). We evaluated different dates and locations with all models. Our results demonstrated that the DT learner has, overall, the highest accuracy in this task. The DT algorithm also showed high accuracy when applied on different dates and in the riparian zone of another river. We conclude that the proposed approach is appropriated to accurately map forest vegetation in riparian zones, including temporal context.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Trees outside forest in Italian agroforestry landscapes: detection and mapping using sentinel-2 imagery
    Sarti, Maurizio
    Ciolfi, Marco
    Lauteri, Marco
    Paris, Pierluigi
    Chiocchini, Francesca
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 609 - 623
  • [22] Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery
    Bolyn, Corentin
    Michez, Adrien
    Gaucher, Peter
    Lejeune, Philippe
    Bonnet, Stephanie
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2018, 22 (03): : 172 - 187
  • [23] Mapping of the Canopy Openings in Mixed Beech-Fir Forest at Sentinel-2 Subpixel Level Using UAV and Machine Learning Approach
    Pilas, Ivan
    Gasparovic, Mateo
    Novkinic, Alan
    Klobucar, Damir
    REMOTE SENSING, 2020, 12 (23) : 1 - 29
  • [24] Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery
    Chen, Na
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01)
  • [25] MAPPING AND MONITORING WETLANDS USING SENTINEL-2 SATELLITE IMAGERY
    Kaplan, G.
    Avdan, U.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 271 - 277
  • [26] Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
    Kganyago, Mahlatse
    Mhangara, Paidamwoyo
    Adjorlolo, Clement
    REMOTE SENSING, 2021, 13 (21)
  • [27] Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery
    Mateo-Perez, Vanesa
    Corral-Bobadilla, Marina
    Ortega-Fernandez, Francisco
    Vergara-Gonzalez, Eliseo P.
    REMOTE SENSING, 2020, 12 (13)
  • [28] Comparing machine learning techniques for aquatic vegetation classification using Sentinel-2 data
    Piaser, Erika
    Villa, Paolo
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 465 - 470
  • [29] Enhancement of tree canopy cover for the mapping of forest from the Sentinel-2 imagery
    Mishra, Vikash K.
    Soni, Pramod K.
    Pant, Triloki
    Sharma, Sudhir K.
    Thakur, Vinay
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [30] Use of Sentinel 2 imagery to estimate vegetation height in fragments of Atlantic Forest
    Perez, Gabriel Guariglia
    Bourscheidt, Vandoir
    Lopes, Luciano Elsinor
    Takata, Juliana Toshie
    Ferreira, Patricia Alves
    Boscolo, Danilo
    ECOLOGICAL INFORMATICS, 2022, 69