Recovery of wave speeds and density of mass across a heterogeneous smooth interface from acoustic and elastic wave reflection operators

被引:3
作者
Bhattacharyya, Sombuddha [1 ]
de Hoop, Maarten V. [3 ]
Katsnelson, Vitaly [2 ]
Uhlmann, Gunther [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Bhopal, India
[2] New York Inst Technol, Coll Arts & Sci, New York, NY 14405 USA
[3] Univ Washington, Dept Math, Seattle, WA USA
基金
美国国家科学基金会;
关键词
Inverse problems; Elastic wave equation; Acoustic wave equation; Microlocal analysis; INVERSE PROBLEM; GLOBAL UNIQUENESS; BOUNDARY; SINGULARITIES; MEDIA;
D O I
10.1007/s13137-022-00199-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the problem of recovering wave speeds and density across a curved interface from reflected wave amplitudes. Such amplitudes have been exploited for decades in (exploration) seismology in this context. However, the analysis in seismology has been based on linearization and mostly flat interfaces. Here, we present an analysis without linearization and allow curved interfaces, establish uniqueness and provide a reconstruction, while making the notion of amplitude precise through a procedure rooted in microlocal analysis.
引用
收藏
页数:46
相关论文
共 34 条
  • [2] Recovery of discontinuous Lame parameters from exterior Cauchy data
    Caday, Peter
    de Hoop, Maarten V.
    Katsnelson, Vitaly
    Uhlmann, Gunther
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (04) : 680 - 715
  • [3] Scattering Control for the Wave Equation with Unknown Wave Speed
    Caday, Peter
    de Hoop, Maarten V.
    Katsnelson, Vitaly
    Uhlmann, Gunther
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (01) : 409 - 464
  • [4] COMPUTATION OF GEOMETRIC SPREADING OF SEISMIC BODY WAVES IN LATERALLY INHOMOGENEOUS-MEDIA WITH CURVED INTERFACES
    CERVENY, V
    LANGER, J
    PSENCIK, I
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1974, 38 (01): : 9 - 19
  • [5] Joint imaging of angle-dependent reflectivity and estimation of the migration velocity model using multiple scattering
    Davydenko, Mikhail
    Verschuur, D. J.
    [J]. GEOPHYSICS, 2019, 84 (06) : R859 - R868
  • [6] UNIQUE RECOVERY OF PIECEWISE ANALYTIC DENSITY AND STIFFNESS TENSOR FROM THE ELASTIC-WAVE DIRICHLET-TO-NEUMANN MAP
    De Hoop, Maarten, V
    Nakamura, Gen
    Zhai, Jian
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (06) : 2359 - 2384
  • [7] Generalized Radon transform inversions for reflectivity in anisotropic elastic media
    deHoop, MV
    Bleistein, N
    [J]. INVERSE PROBLEMS, 1997, 13 (03) : 669 - 690
  • [8] FIRST VARIATION OF THE GENERAL CURVATURE-DEPENDENT SURFACE ENERGY
    Dogan, Guenay
    Nochetto, Ricardo H.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (01): : 59 - 79
  • [9] On the inverse boundary value problem for linear isotropic elasticity
    Eskin, G
    Ralston, J
    [J]. INVERSE PROBLEMS, 2002, 18 (03) : 907 - 921
  • [10] Hammad H., 2019, SLOWNESS REFLECTION, V2019, P15, DOI DOI 10.3997/2214-4609.201901538