Heat Kernels in Sub-Riemannian Settings

被引:0
|
作者
Lanconelli, Ermanno [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
来源
GEOMETRIC ANALYSIS AND PDES | 2009年 / 1977卷
关键词
FUNDAMENTAL-SOLUTIONS; DIFFERENTIAL OPERATORS; REAL HYPERSURFACES; HARNACK INEQUALITY; REGULARITY; SQUARES;
D O I
10.1007/978-3-642-01674-5_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this lectures we present a series of results concerning a class of diffusion second order PDE's of heat-type. The results we show have been obtained in collaboration with M.Bramanti, L.Brandolini and F. Uguzzoni (see [9], [10], [24]). The exended version of the main results presented in these notes is contained in [10]. © 2009 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:35 / 61
页数:27
相关论文
共 50 条
  • [31] Sub-Riemannian interpolation inequalities
    Barilari, Davide
    Rizzi, Luca
    INVENTIONES MATHEMATICAE, 2019, 215 (03) : 977 - 1038
  • [32] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [33] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [34] Paths in sub-Riemannian geometry
    Jean, F
    NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 569 - 574
  • [35] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [36] A problem of sub-Riemannian geometry
    Petrov, NN
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [37] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [38] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [39] About sub-Riemannian spheres
    Rifford, L.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 521 - 526
  • [40] Sub-Riemannian Cartan Sphere
    Yu. L. Sachkov
    Doklady Mathematics, 2022, 106 : 462 - 466