Reviving bulky MoS2 as an advanced anode for lithium-ion batteries

被引:40
作者
Li, Shicai [1 ]
Liu, Ping [1 ]
Huang, Xiaobing [2 ]
Tang, Yougen [1 ]
Wang, Haiyan [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Chem & Chem Engn, Changde 415000, Peoples R China
基金
国家重点研发计划;
关键词
REDUCED GRAPHENE OXIDE; ENERGY-STORAGE; LAYER MOS2; IN-SITU; PERFORMANCE; LI; ELECTRODE; MECHANISM; NANOSHEETS; DOPAMINE;
D O I
10.1039/c9ta01089k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bulky MoS2 obtained from molybdenite is an inexpensive and naturally abundant product with high intrinsic Li storage capacity originating from the Li storage capabilities of its Mo atoms and active S element. How to release the intrinsic capacity of bulky MoS2 is of great interest but has not been explored to date. Herein, we developed a surface-modification triggered self-assembling process to construct a robust 3D bulky MoS2@C/RGO composite. The adjacent N-doped amorphous carbon layer and outer RGO component not only can help immobilize the active Mo atoms and polysulfide ions during extended cycles but can also help release volumetric strain and accelerate electron transportation. Furthermore, the hierarchical 3D porous structure is beneficial for electrolyte penetration and Li ion diffusion. As a result, the intrinsic Li storage capability of bulky MoS2 is readily released. It delivers the discharge capacity of 1189mA h g(-1) at 200 mA g(-1) after 100 cycles. At the higher current density of 1 A g(-1), the reversible capacity of 770 mA h g(-1) is still maintained. Further examination of the MoS2-PDA-GO30//LiCoO2 full cells suggests that the as-obtained sample (1750 W h kg(-1)) is promising to achieve practical applications. This study may shed some light on the direct usage of bulky MoS2 powder as a high-performance LIB anode. Moreover, the synthesis strategy proposed herein may be a versatile protocol for the rational design of other bulky materials, such as Si and metal oxides, for high-performance energy storage devices.
引用
收藏
页码:10988 / 10997
页数:10
相关论文
共 50 条
  • [21] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Jiao, Qingze
    Du, Jinyu
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Lu, Qinliang
    Shi, Daxin
    Zhao, Yun
    IONICS, 2019, 25 (10) : 4659 - 4666
  • [22] MoS2/C3N heterostructure: A promising anode material for Lithium-ion batteries
    He, Jingjing
    Jiao, Zhaoyong
    APPLIED SURFACE SCIENCE, 2022, 580
  • [23] ZnFe2O4/MoS2/rGO composite as an anode for rechargeable Lithium-ion batteries
    Jiang, Lixue
    Gao, Wang
    Jin, Bo
    Li, Huan
    Li, Shanshan
    Zhu, Guoren
    Jiang, Qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 823 : 407 - 415
  • [24] MoS2-based anode materials for lithium-ion batteries: Developments and perspectives
    Zhao, Lianyu
    Wang, Yishan
    Wei, Chuncheng
    Huang, Xiaoxiao
    Zhang, Xueqian
    Wen, Guangwu
    PARTICUOLOGY, 2024, 87 : 240 - 270
  • [25] A flexible three-dimensional MoS2/carbon architecture derived from melamine foam as free-standing anode for high performance lithium-ion batteries
    Zhao, Hang
    Wu, Jinhua
    Li, Jianlong
    Wu, Hao
    Zhang, Yun
    Liu, Heng
    APPLIED SURFACE SCIENCE, 2018, 462 : 337 - 343
  • [26] Synthesis of homogeneous honeycomb MoS2 as the anode material for lithium-ion batteries using chemical vapor deposition and a template method
    Wang, Dongsheng
    Liu, Yan
    Li, Yuan
    Zhang, Hao
    Fang, Zhen
    Wang, Zhiyong
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6631 - 6638
  • [27] MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries
    Bindumadhavan, Kartick
    Srivastava, Suneel Kumar
    Mahanty, Sourindra
    CHEMICAL COMMUNICATIONS, 2013, 49 (18) : 1823 - 1825
  • [28] Synthesis of FeS Nanoparticles Embedded in MoS2/C Nanosheets as High-Performance Anode Material for Lithium-Ion Batteries
    Wang, Hongqiang
    Ji, Cheng
    Zhang, Xiaohui
    Sun, Yanna
    Wang, Yi
    Pan, Qichang
    Li, Qingyu
    ENERGY TECHNOLOGY, 2019, 7 (05)
  • [29] Enhanced Hydrothermal Synthesis and Electrochemical Performance of Subsphaeroidal MoS2 used as Anode Material for Lithium-Ion Batteries
    Wu Yang
    Zhang Liangliang
    Wang Wei
    Fan Dongsheng
    Yang Shenshen
    Bai Yunhao
    Li Jiwen
    Liu Wei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (08) : 2893 - 2900
  • [30] MoO2 Nanoparticles Decorated MoS2 Nansheets Encapsulated on MXene as Advanced Anode for Ultrafast and Stable Lithium Ion Batteries
    He, Jianhui
    Ma, Chunrong
    Xu, Zhixin
    Zhou, Daowu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (05):