Reviving bulky MoS2 as an advanced anode for lithium-ion batteries

被引:40
|
作者
Li, Shicai [1 ]
Liu, Ping [1 ]
Huang, Xiaobing [2 ]
Tang, Yougen [1 ]
Wang, Haiyan [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Chem & Chem Engn, Changde 415000, Peoples R China
基金
国家重点研发计划;
关键词
REDUCED GRAPHENE OXIDE; ENERGY-STORAGE; LAYER MOS2; IN-SITU; PERFORMANCE; LI; ELECTRODE; MECHANISM; NANOSHEETS; DOPAMINE;
D O I
10.1039/c9ta01089k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bulky MoS2 obtained from molybdenite is an inexpensive and naturally abundant product with high intrinsic Li storage capacity originating from the Li storage capabilities of its Mo atoms and active S element. How to release the intrinsic capacity of bulky MoS2 is of great interest but has not been explored to date. Herein, we developed a surface-modification triggered self-assembling process to construct a robust 3D bulky MoS2@C/RGO composite. The adjacent N-doped amorphous carbon layer and outer RGO component not only can help immobilize the active Mo atoms and polysulfide ions during extended cycles but can also help release volumetric strain and accelerate electron transportation. Furthermore, the hierarchical 3D porous structure is beneficial for electrolyte penetration and Li ion diffusion. As a result, the intrinsic Li storage capability of bulky MoS2 is readily released. It delivers the discharge capacity of 1189mA h g(-1) at 200 mA g(-1) after 100 cycles. At the higher current density of 1 A g(-1), the reversible capacity of 770 mA h g(-1) is still maintained. Further examination of the MoS2-PDA-GO30//LiCoO2 full cells suggests that the as-obtained sample (1750 W h kg(-1)) is promising to achieve practical applications. This study may shed some light on the direct usage of bulky MoS2 powder as a high-performance LIB anode. Moreover, the synthesis strategy proposed herein may be a versatile protocol for the rational design of other bulky materials, such as Si and metal oxides, for high-performance energy storage devices.
引用
收藏
页码:10988 / 10997
页数:10
相关论文
共 50 条
  • [1] Intercalated hydrates stabilize bulky MoS2 anode for Lithium-Ion battery
    Xie, Miao
    Lv, Zhuoran
    Zhao, Wei
    Fang, Yuqiang
    Huang, Jian
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [2] MoS2 for beyond lithium-ion batteries
    Yang, Feipeng
    Feng, Xuefei
    Glans, Per-Anders
    Guo, Jinghua
    APL MATERIALS, 2021, 9 (05)
  • [3] 3D MoS2/graphene nanoflowers as anode for advanced lithium-ion batteries
    He, Han-bing
    Liu, Zhen
    Peng, Chao-qun
    Liu, Jun
    Wang, Xiao-feng
    Zeng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (12) : 4041 - 4049
  • [4] Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries
    Nguyen, Thang Phan
    Kim, Il Tae
    MATERIALS, 2022, 15 (06)
  • [5] Rationally designed bulky MoS2@C@MoS2 hierarchical materials as an enhanced anode for lithium-ion batteries
    Peng, Chenglong
    Li, Yinchang
    Shi, Mingming
    Wang, Jiahong
    MATERIALS TODAY SUSTAINABILITY, 2025, 29
  • [6] A novel MoS2/C nanocomposite as an anode material for lithium-ion batteries
    Liu, Yan
    Tang, Daoping
    Zhong, Haoxiang
    Zhang, Qianyu
    Yang, Jianwen
    Zhang, Lingzhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 729 : 583 - 589
  • [7] Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries
    Sun, Panling
    Zhang, Wuxing
    Hu, Xianluo
    Yuan, Lixia
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) : 3498 - 3504
  • [8] Synthesis of MoS2 nanotube using a sacrificial template method as advanced anode material for lithium-ion batteries
    Cao, Mengjue
    Feng, Yi
    Zhang, Pengcheng
    Yang, Lvye
    Gu, Xiaoli
    Yao, Jianfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 907
  • [9] In situ formation of MoS2/C nanocomposite as an anode for high-performance lithium-ion batteries
    Lee, Gyu-Ho
    Kim, Si-Jin
    Kim, Min-Cheol
    Choe, Hui-Seon
    Kim, Da-Mi
    Han, Sang-Beom
    Kwak, Da-Hee
    Jeong, Jae Hyun
    Park, Kyung-Won
    RSC ADVANCES, 2016, 6 (95): : 92259 - 92266
  • [10] Three-Dimensional Crumpled Reduced Graphene Oxide/MoS2 Nanoflowers: A Stable Anode for Lithium-Ion Batteries
    Xiong, Fangyu
    Cai, Zhengyang
    Qu, Longbing
    Zhang, Pengfei
    Yuan, Zefang
    Asare, Owusu Kwadwo
    Xu, Wangwang
    Lin, Chao
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12625 - 12630