Analytical model for nonlinear piezoelectric energy harvesting devices

被引:26
作者
Neiss, S. [1 ]
Goldschmidtboeing, F. [1 ]
Kroener, M. [1 ]
Woias, P. [1 ]
机构
[1] Univ Freiburg, IMTEK, Dept Microsyst Engn, Lab Design Microsyst, Freiburg, Germany
关键词
energy harvesting; Duffing oscillator; analytical model; jump frequencies; maximum power output; DUFFING OSCILLATOR; JUMP FREQUENCIES;
D O I
10.1088/0964-1726/23/10/105031
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Model based design of piezoelectric energy harvesting systems [J].
Twiefel, Jens ;
Richter, Bjoern ;
Hemsel, Tobias ;
Wallaschek, Joerg .
SMART STRUCTURES AND MATERIALS 2006: DAMPING AND ISOLATION, 2006, 6169
[32]   A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components [J].
Zhang, Bin ;
Liu, Hongsheng ;
Zhou, Shengxi ;
Gao, Jun .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (07) :1001-1026
[33]   A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components [J].
Bin ZHANG ;
Hongsheng LIU ;
Shengxi ZHOU ;
Jun GAO .
Applied Mathematics and Mechanics(English Edition), 2022, 43 (07) :1001-1026
[34]   Enhancement of Piezoelectric Energy Harvesting with Multi-Stable Nonlinear Vibrations [J].
Avvari, Panduranga Vittal ;
Tang, Lihua ;
Yang, Yaowen ;
Soh, Chee Kiong .
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2013, 2013, 8688
[35]   Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters [J].
Ferrari, Marco ;
Ferrari, Vittorio ;
Guizzetti, Michele ;
Ando, Bruno ;
Baglio, Salvatore ;
Trigona, Carlo .
PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01) :1203-+
[36]   Parameter Optimization of Nonlinear Piezoelectric Energy Harvesting System for IoT Applications [J].
Thong, Li Wah ;
Kok, Swee Leong ;
Ramlan, Roszaidi .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) :355-363
[37]   Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters [J].
Ferrari, M. ;
Ferrari, V. ;
Guizzetti, M. ;
Ando, B. ;
Baglio, S. ;
Trigona, C. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 162 (02) :425-431
[38]   A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components [J].
Bin Zhang ;
Hongsheng Liu ;
Shengxi Zhou ;
Jun Gao .
Applied Mathematics and Mechanics, 2022, 43 :1001-1026
[39]   Nonlinear Smart Beam Model for Energy Harvesting [J].
Zhu, Wenguo ;
Morandini, Marco .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2021, 143 (05)
[40]   A piezoelectric acoustic black hole absorber for rail vibration reduction and energy harvesting: Semi-analytical model [J].
Xiao, Yan ;
Zhu, Hongping ;
Ye, Kun ;
Weng, Shun ;
Luo, Hao ;
Du, Yanliang .
ENGINEERING STRUCTURES, 2025, 322