Efficiently inaccurate approximation of hyperbolic tangent used as transfer function in artificial neural networks

被引:6
作者
Simos, T. E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Ch. [6 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Peoples R China
[2] South Ural State Univ, 76 Lenin Ave, Chelyabinsk 454080, Russia
[3] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang, Peoples R China
[4] Democritus Univ Thrace, Sect Math, Dept Civil Engn, Xanthi, Greece
[5] 10 Konitsis St, GR-17564 Athens, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Dept, 34400 Euripus Campus, Athens, Greece
关键词
Cubic splines; Hyperbolic tangent; Transfer functions; ACTIVATION FUNCTION;
D O I
10.1007/s00521-021-05787-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the approximation of tanh (i.e. the hyperbolic tangent) by specific formation of cubic splines. Thus, we save many multiplications and a division required for the standard double precision evaluation of this function. The cost we have to pay is to admit at most 2-4 decimal digits of accuracy in the final approximation. As a result, a speeding in neural networks performance is experienced after implementing this new approximant as transfer function.
引用
收藏
页码:10227 / 10233
页数:7
相关论文
共 21 条
  • [1] On the Estimation and Control of Nonlinear Systems With Parametric Uncertainties and Noisy Outputs
    Alberto Meda-Campana, Jesus
    [J]. IEEE ACCESS, 2018, 6 : 31968 - 31973
  • [2] [Anonymous], 1980, Software Manual for the Elementary Functions
  • [3] [Anonymous], MATLAB VERSION R2019
  • [4] [Anonymous], 2016, Elementary functions: Algorithms and implementation
  • [5] Novel Nonlinear Hypothesis for the Delta Parallel Robot Modeling
    Aquino, Gustavo
    Rubio, Jose De Jesus
    Pacheco, Jaime
    Gutierrez, Guadalupe Juliana
    Ochoa, Genaro
    Balcazar, Ricardo
    Cruz, David Ricardo
    Garcia, Enrique
    Novoa, Juan Francisco
    Zacarias, Alejandro
    [J]. IEEE ACCESS, 2020, 8 : 46324 - 46334
  • [6] DEVDAN: Deep evolving denoising autoencoder
    Ashfahani, Andri
    Pratama, Mahardhika
    Lughofer, Edwin
    Ong, Yew Soon
    [J]. NEUROCOMPUTING, 2020, 390 : 297 - 314
  • [7] Beale MarkHudson., 2019, Deep Learning Toolbox Reference
  • [8] Analysis of hydraulic conductivity of fractured groundwater flow media using artificial neural network back propagation
    Cahyadi, Tedy Agung
    Syihab, Zuher
    Widodo, Lilik Eko
    Notosiswoyo, Sudarto
    Widijanto, Eman
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (01) : 159 - 179
  • [9] Wavelet-Based EEG Processing for Epilepsy Detection Using Fuzzy Entropy and Associative Petri Net
    Chiang, Hsiu-Sen
    Chen, Mu-Yen
    Huang, Yu-Jhih
    [J]. IEEE ACCESS, 2019, 7 : 103255 - 103262
  • [10] De Boor C, 2001, Applied mathematical sciences, V27