DrugComb: an integrative cancer drug combination data portal

被引:151
作者
Zagidullin, Bulat [1 ]
Aldahdooh, Jehad [1 ]
Zheng, Shuyu [1 ]
Wang, Wenyu [1 ]
Wang, Yinyin [1 ]
Saad, Joseph [1 ]
Malyutina, Alina [1 ]
Jafari, Mohieddin [1 ]
Tanoli, Ziaurrehman [1 ]
Pessia, Alberto [1 ]
Tang, Jing [1 ,2 ]
机构
[1] Univ Helsinki, Inst Mol Med Finland, Helsinki Life Sci Inst, Helsinki, Finland
[2] Univ Helsinki, Res Program Syst Oncol, Fac Med, Helsinki, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
SYNERGY; SCREEN; IDENTIFY;
D O I
10.1093/nar/gkz337
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drug combination therapy has the potential to enhance efficacy, reduce dose-dependent toxicity and prevent the emergence of drug resistance. However, discovery of synergistic and effective drug combinations has been a laborious and often serendipitous process. In recent years, identification of combination therapies has been accelerated due to the advances in high-throughput drug screening, but informatics approaches for systems-level data management and analysis are needed. To contribute toward this goal, we created an open-access data portal called DrugComb (https://drugcomb.fimm.fi) where the results of drug combination screening studies are accumulated, standardized and harmonized. Through the data portal, we provided a web server to analyze and visualize users' own drug combination screening data. The users can also effectively participate a crowdsourcing data curation effect by depositing their data at DrugComb. To initiate the data repository, we collected 437 932 drug combinations tested on a variety of cancer cell lines. We showed that linear regression approaches, when considering chemical fingerprints as predictors, have the potential to achieve high accuracy of predicting the sensitivity of drug combinations. All the data and informatics tools are freely available in DrugComb to enable a more efficient utilization of data resources for future drug combination discovery.
引用
收藏
页码:W43 / W51
页数:9
相关论文
共 43 条
[1]  
Bairoch Amos, 2018, J Biomol Tech, V29, P25, DOI 10.7171/jbt.18-2902-002
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]  
BERENBAUM MC, 1989, PHARMACOL REV, V41, P93
[4]   Dual gene activation and knockout screen reveals directional dependencies in genetic networks [J].
Boettcher, Michael ;
Tian, Ruilin ;
Blau, James A. ;
Markegard, Evan ;
Wagner, Ryan T. ;
Wu, David ;
Mo, Xiulei ;
Biton, Anne ;
Zaitlen, Noah ;
Fu, Haian ;
McCormick, Frank ;
Kampmann, Martin ;
McManus, Michael T. .
NATURE BIOTECHNOLOGY, 2018, 36 (02) :170-+
[5]   Bioactive triterpenoids from Sambucus java']javanica Blume [J].
Chen, Feilong ;
Liu, Dong-Li ;
Wang, Wei ;
Lv, Xiao-Man ;
Li, Weixi ;
Shao, Li-Dong ;
Wang, Wen-Jing .
NATURAL PRODUCT RESEARCH, 2020, 34 (19) :2816-2821
[6]   A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice [J].
Chisamore, Michael J. ;
Gentile, Michael A. ;
Dillon, Gregory Michael ;
Baran, Matthew ;
Gambone, Carlo ;
Riley, Sean ;
Schmidt, Azriel ;
Flores, Osvaldo ;
Wilkinson, Hilary ;
Alves, Stephen E. .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2016, 163 :88-97
[7]   Patient-derived models of acquired resistance can identify effective drug combinations for cancer [J].
Crystal, Adam S. ;
Shaw, Alice T. ;
Sequist, Lecia V. ;
Friboulet, Luc ;
Niederst, Matthew J. ;
Lockerman, Elizabeth L. ;
Frias, Rosa L. ;
Gainor, Justin F. ;
Amzallag, Arnaud ;
Greninger, Patricia ;
Lee, Dana ;
Kalsy, Anuj ;
Gomez-Caraballo, Maria ;
Elamine, Leila ;
Howe, Emily ;
Hur, Wooyoung ;
Lifshits, Eugene ;
Robinson, Hayley E. ;
Katayama, Ryohei ;
Faber, Anthony C. ;
Awad, Mark M. ;
Ramaswamy, Sridhar ;
Mino-Kenudson, Mari ;
Iafrate, A. John ;
Benes, Cyril H. ;
Engelman, Jeffrey A. .
SCIENCE, 2014, 346 (6216) :1480-1486
[8]   Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells [J].
Forcina, Giovanni C. ;
Conlon, Megan ;
Wells, Alex ;
Cao, Jennifer Yinuo ;
Dixon, Scott J. .
CELL SYSTEMS, 2017, 4 (06) :600-+
[9]   The ChEMBL database in 2017 [J].
Gaulton, Anna ;
Hersey, Anne ;
Nowotka, Michal ;
Bento, A. Patricia ;
Chambers, Jon ;
Mendez, David ;
Mutowo, Prudence ;
Atkinson, Francis ;
Bellis, Louisa J. ;
Cibrian-Uhalte, Elena ;
Davies, Mark ;
Dedman, Nathan ;
Karlsson, Anneli ;
Magarinos, Maria Paula ;
Overington, John P. ;
Papadatos, George ;
Smit, Ines ;
Leach, Andrew R. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D945-D954
[10]   Toward a Better Understanding of the Complexity of Cancer Drug Resistance [J].
Gottesman, Michael M. ;
Lavi, Orit ;
Hall, Matthew D. ;
Gillet, Jean-Pierre .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 56, 2016, 56 :85-102