Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform

被引:179
|
作者
Liu, Yuexin [1 ]
Lee, Young Jong [1 ]
Cicerone, Marcus T. [1 ]
机构
[1] NIST, Div Polymers, Gaithersburg, MD 20899 USA
关键词
STOKES-RAMAN SCATTERING; SPECTROSCOPY;
D O I
10.1364/OL.34.001363
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a closed-form approach for performing a Kramers-Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra.
引用
收藏
页码:1363 / 1365
页数:3
相关论文
共 50 条
  • [1] Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy
    Cicerone, Marcus T.
    Aamer, Khaled A.
    Lee, Young Jong
    Vartiainen, Erik
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (05) : 637 - 643
  • [2] On a time-domain representation of the Kramers-Kronig dispersion relations
    Waters, KR
    Hughes, MS
    Brandenburger, GH
    Miller, JG
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 108 (05): : 2114 - 2119
  • [3] KRAMERS-KRONIG RELATIONS - SUPPLEMENTARY TECHNIQUE TO THE TIME-DOMAIN SPECTROSCOPY
    Ovechko, V. S.
    UKRAINIAN JOURNAL OF PHYSICS, 2020, 65 (12): : 1051 - 1055
  • [4] Combination of Kramers-Kronig transform and time-domain methods for the determination of optical constants in THz spectroscopy
    Herrmann, Michael
    Platte, Frank
    Nalpantidis, Konstantinos
    Beigang, Rene
    Heise, H. Michael
    VIBRATIONAL SPECTROSCOPY, 2012, 60 : 107 - 112
  • [5] Kramers-Kronig Relations and Frequency to Time-Domain Transformation Method for Time Domain Calculation of Floating Body with Forward Speed
    Wang, Xiaojia
    Zhu, Renchuan
    Hong, Liang
    Ship Building of China, 2018, 59 (02) : 9 - 23
  • [6] CALCULATION OF SPECTRUM OF PHASE USING KRAMERS-KRONIG RELATIONS
    MAKAROVA, EG
    MOROZOV, VN
    OPTIKA I SPEKTROSKOPIYA, 1976, 40 (02): : 240 - 244
  • [7] Practical Kramers-Kronig Phase Retrieval FIR Filter With the Gibbs Phenomenon
    Liu, Yuyang
    Li, Yan
    Song, Jingwei
    Luo, Ming
    He, Zhixue
    Yang, Chao
    Lv, Jianxin
    Kong, Deming
    Qiu, Jifang
    Hong, Xiaobin
    Guo, Hongxiang
    Wu, Jian
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (04) : 1007 - 1017
  • [8] Phase retrieval of reflection and transmission coefficients from Kramers-Kronig relations
    Gralak, Boris
    Lequime, Michel
    Zerrad, Myriam
    Amra, Claude
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (03) : 456 - 462
  • [9] On the Kramers-Kronig transform with logarithmic kernel for the reflection phase in the Drude model
    Andre, Jean-Michel
    Le Guen, Karine
    Jonnard, Philippe
    Mahne, Nicola
    Giglia, Angelo
    Nannarone, Stefano
    JOURNAL OF MODERN OPTICS, 2010, 57 (16) : 1504 - 1512
  • [10] CAUSALITY CALCULATIONS IN TIME DOMAIN - EFFICIENT ALTERNATIVE TO KRAMERS-KRONIG METHOD
    PETERSON, CW
    KNIGHT, BW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (10) : 1238 - 1242